

REMEDIAL INVESTIGATION AUTO ION INCORPORATED: KALAMAZOO, MICHIGAN

Prepared By:

Fred C. Hart Associates, Inc.

December 1988

TABLE OF CONTENTS (CONTINUED)

Section	<u>Title</u>	Page
	3.5.2 Methodology	3-68 3-68 3-68
	Survey	3-69 3-69 3-69 3-69
	3.6.2 Methodology 3.6.3 Findings 3.7 Surface Water and Sediment Sampling 3.7.1 Purpose	3-69 3-77 3-79 3-79
	3.7.2 Methodology	3-79 3-88 3-88 3-89
	3.7.3.3 Other Discharges	3- 109 3- 109
4.0	3.9 Waste Water Disposal	
	4.1 Introduction	4-1 4-1 4-1
5.0	4.3 Surface Water Hydrology	4-6 4-6 5-1
	5.1 Subsurface Soils	5-1 5-9 5-11 5-11

LIST OF FIGURES

Number	<u>Title</u>	Page
2-A	Site Location Map	2-2
2- B	Site Map	2- 5
3-A	Boring Locations	3-2
3− B	Monitoring Well Locations	3-37
3-€	Potentiometric Surface Map of Static Water Levels Measured 11-3-87	3-71
3-D	Potentiometric Surface Map of Static Water Levels Measured 1-8-88	3-72
3-E	Potentiometric Surface Map of Static Water Levels Measured 2-21-88	3-73
3 - F	Potentiametric Surface Map of Static Water Levels Measured 3-7-88	3 -74
3 - G	Potentiometric Surface Map of Static Water Levels Measured 3-25-88	3-75
3 - H	Sediment Sample Locations	3 -8 0
3 -I	Sediment and Surface Water Samples Locations, Transects A - D	3-81
3 - J	Analyses above CRDL at Transects E & F	3-102
3 - K	Organic analyses above the CRDL at Transects A - D	3−1 03
3 - L	Inorganic Analyses above the CRDL at Transects E & F	3-104
3-M	Inorganic Analyses above the CRDL at Transects A - D	3-1 05
3-N	Trench Excavation Location	3-110
4-A	Locations of Cross Sections	4-2
4-B	Geologic Cross Section W-1 to W-6	- , -3
4C	Geologic Cross Section W-3h to B-3	4-4

LIST OF FIGURES (CONTINUED)

Number	Title	Page
4- D	Geologic Cross Section B-1 to W-5	4-5
5-A	Depths of Contaminants at Auto Ion B-1 and B-2	5-2
5 - B	Depths of Contaminants at Auto Ion B-3 through B-5	5-3
5 - C	Depths of Contaminants at Auto Ion B-6 and B-7	5-4
5-D	Depths of Contaminants at Auto Ion W1 and W2	5- 5
5-E	Depths of Contaminants at Auto Ion W3b	5-6
5-F	Depths of Contaminants at Auto Ion W4 through W6 .	5-7

LIST OF TABLES

Mumber	<u>Title</u>	Pa ge
2-1	Temperature & Precipitation Data	2-3
3-1	Soil Borings & Sample Depths	3-4
3-2	Hydraulic Conductivities	3-11
3-3	Organic Analyses Summary Sheet for Soil	3-12
3-4	Inorganic Analyses Summary Sheet for Soils	3-17
3- 5	Pesticide/PCB Analyses Summary Sheet for Soil	3-31
3-6	Typical Element Concentrations in Natural Soils	3-33
3-7	Laboratory Analyzed Groundwater Samples	3-40
3-8	Organic Analyses Summary Sheet for Groundwater	3-41
3-9	Inorganic Analyses Summary Sheet for Groundwater	3-49
3-10	Comparison of Analytical Results for Two Rounds of Groundwater Samlping	3-51
3-11	Required Detection Limits (RDL)* Hazardous Substance List (HSL) Organic Parameters .	3-60
3-12	Well Data	3-70
3-13	Specific Values and Hydraulic Conductivities of Monitoring Wells	3-78
3-14	Surface Water Samples	3-82
3-15	Summary of Organic Concentrations above CRDL Surface Water Samples	3-83
3-16	Semivolatile Analyses Summary Sheet for Surface Water	3-84
3-17	Inorganic Analyses Summary Sheet for Surface Water .	3-85
3-18	Sediment Samples	3-86
3-19	Organic Analyses Summary Sheet for Sediments	3-90
3-20	Pesticide/PCB Analyses Summary Sheet for Sediments .	3-98
3-21	Inorganic Analyses Summary Sheet for Sediments	3-99

LIST OF TABLES (CONTINUED)

Murber		<u>Title</u>	Page
4-1	Constock Gauge Data		4-7

LIST OF APPENDICES

APPENDIX III

Boring & Well Logs

APPENDIX IV

Grain Size Distribution Analysis

APPENDIX V

Data Sheets, Case Narrative and QA/QC Review

APPENDIX VI

Monitoring Well Construction Diagrams and Slug
Test Data

Detailed Site Maps

APPENDIX VIII Waste Water Disposal

APPENDIX

APPENDIX VII

APPENDIX IX Fly Ash and Fly Ash Leachate Characteristics

NPDES Permits

1.0 INTRODUCTION

HART Environmental Management Corporation (HART) was retained by the Auto Ion Steering Committee of Potentially Responsible Parties (PRP's) to conduct a Remedial Investigation/Feasibility Study of the Auto Ion Site ("the Site") in Kalamazoo, Michigan. This investigation was implemented pursuant to CERCIA Administrative Order #VW-86-C-07 between the Auto Ion Steering Committee and the United States Environmental Protection Agency (EPA) under the national "Superfund" program. This report presents the results of the Remedial Investigation conducted at the Site from October 1987 through March 1988.

1.1 Purpose of Investigation

The purpose of the Remedial Investigation was to determine if any contaminants were present at the Site, determine any risk associated with those contaminants and gather data necessary to support a Feasibility Study for remediation.

The Auto Ion Site operated as a waste hauling, treatment and disposal facility from 1963 through 1973. Site investigations by the Michigan Department of Natural Resources (MDNR) and the EPA resulted in an Immediate Removal Action request. An immediate removal was conducted by the PRP's resulting in the removal of all surface material including the building. Subsequently, a work plan was developed to investigate the extent of environmental contamination at the Site and HART was retained to carry out the investigation.

The field investigation was designed to determine whether the past activities contaminated the soil, groundwater or the Kalamazoo River. The data generated from the investigation will enable HART to examine the risks, if any, to the public health and environment. The results of the investigation will be used in an evaluation of remedial alternatives for a Feasibility Study. The study can then provide a recommendation of the most appropriate remedial alternatives.

1.2 Scope of Work

The scope of the field effort to determine the presence and extent of contamination at the Site can be summarized as follows:

1.2.1 Subsurface Soil and Groundwater Investigation

This task assessed the subsurface conditions within and in the vicinity of the Site. The hydrogeologic assessment included a test boring and groundwater monitoring well installation program, permeability testing and a program of groundwater and soil sampling to characterize the groundwater and subsurface soil quality at the Site.

1.2.2 Surface Water/Sediment Investigation

This task assessed the status of the Kalamazoo River above, at and below the Site to determine what, if any, impact the Site has on the river. This investigation included a background search to identify other possible sources of contamination, and a surface water and river sediment sampling analysis program to characterize the river water and sediment quality.

1.2.3 Excavation for Alleged Buried Drums

This task, requested by the MDNR during the Site work, assessed the validity of allegations of buried drums put forth by informants. This portion of the investigation included the use of metal detection equipment and the opening of an observation trench to determine whether drums had been buried as alleged.

1.2.4 Field Surveying

This task resulted in the production of base maps of the Auto Ion Site. Data included in these maps consisted of the location of monitoring wells and test borings, elevation contours, and major Site features.

1.3 Contents of Report

This draft report has been divided into seven chapters. The first chapter contains introductory material pertaining to the purpose and scope of the investigation. The second summarizes background data collected prior to this investigation. A summary of the purpose, methodology and findings of all the field investigative activities is included in the third chapter. The fourth and fifth chapters summarize our current understanding of the geology, hydrology and extent of contamination at the Site. Chapter 6 contains the Endangerment Assessment (EA) and Chapter 7 contains the conclusions of the RI and EA report.

2.0 SITE BACKGROUND INFORMATION

2.1 Physicaraphic Setting

The Site is enclosed within an unmarked fenced lot at 74 Mills Street located in a northeast commercial industrial district in Kalamazoo, Michigan. Figure 2-A shows the Site location. The property is bordered on the south side by the Kalamazoo River and on the north side by O'Neil Street. South of the river is a small golf course. An auto impound lot is located 150 feet north of O'Neil Street. Adjacent to the Site on the west side is an industrial painting company and the Conrail round house property is located east of Mills Street.

The only residence in the immediate vicinity of the Auto Ion Site is located approximately 500 feet north of the Site on Mills Street, directly adjacent to the main railroad line from Detroit to Kalamazoo. Populations within a one mile and three mile radius of the Site are estimated by the Kalamazoo County Planning and Community Development Department to be approximately 36,000 and 100,000 respectively.

The City of Kalamazoo has a municipal well field located within one mile of the Site. However, this field has not been in use for approximately one year due to the contamination of the field by coliform. There are no plans to re-activate the field in the near future (from conversations with Bruce Minsley, Department Utilities Director, City of Kalamazoo, 1988). Little information is available on the usage of industrial wells in the vicinity of the Site. It is believed that all industries in the area are on the municipal supply, but several may continue to use their own wells for non-contact cooling water.

General climatological data for the Kalamazoo area is contained in Table 2-1. Kalamazoo receives an average of 34.4 inches of rainfall and 71.4 inches of snowfall per year. The average temperature varies from 24.8 F in January to 73 F in July.

1-S 318VI

VI KALAMAZOO, MICHIGAN TEMPERATURE AND PRECIPITATION DATA

2.17	/	91	12	9.85	/	17.95	. /	0	7.78	/	6001€	/	01-	/	86	/	8.62	,	7.92	/	9.92	\ne9Y
	1		/		1		/	,		/		/		/		/		1		/		1
S.21	1	1	/	09.₹	1	1.30	1	<u>د</u>	2.5	/	0	1	1 -	1	19	/	1.95	/	22.3	/	9.22	\-19dm95
٤.9	1	1	/	0₹.₹	1	11.1	1	' 1	9.5	/	. 75	1	8	1	75	/	1.02	/	35.4	/	8.72	/-Tember-/
٥.	1	S	1	90.4	1	91,1	-	' '	7.S	<i> </i>	162	1	72	/	58	/	2.42	1	1 (27	/	5.29	179do1
1	1	9	/	02.2	1	\$9.1	1	9	3.0	/	ደ ንን	1	23	/	56	/	7.79	1	7.52	1	1.67	\19dm910
. 0	1	\$	1	01.4	1	95.1	,	' O	8.5	/	789	1	٤٦	/	96	/	8.17	/	8.92	/	83.8	/1snf
0	1	9	/	٤8.۶	1	21.5	-	' 9	3.5	1	121	1	27	/	96	1	0.87	1	5.13	1	8.48	/A1
0	1	4	1	٤٢.4	1	01.5	-	' 6	7 . 2	/	685	/	07	1	56	/	7.69	/	2.72	/	£.18	/
1	1	1	1	15.7	1	90.S	1	, ,	₹.₹	1	35¢	1	59	/	68	/	9.65	1	7.77	/	8.17	/
2.9	1	8	/	00.2	1	13.5		′ 1	3.7	/	111	/	81	1	58	/	8.84	1	2.18	/	1.09	/ 11.
0.11	1	1	1	\$.29	1	92.1	1	/ 8	2.4	/	SL	1	\$0	/	71	/	9.25	1	₹.65	1	6.77	/ya
14.3	1	\$	/	19.5	1	56'		<u>ر</u> د	8.1	1	0	1	9-	/	25	/	1.75	1	0.91	/	٤٠٤٤	\-Yraun
8.71	1	9	/	2.90	1	1.20	,	, c	2.1	/	0 -	1	6-	1	95	1	8.45	/	7.71	/	S.SE	/Yrau
	1		1		1			1		/		1		1		1		1		/		/
ज	/		1	u i	1	u i		/ U	•	/	2) inU	/	3	/	7	/	ī	1	<u> </u>	/	ī	/
/////////	///	'//////////////////////////////////////	///	11111	//	/////	1//	1111	1111	//	///////////////////////////////////////	///	///////////////////////////////////////	///	(1/1/1/1/1///	11.	////////	//	///////////////////////////////////////	////	11111	1111111
	/	910M 10	/		1		-	•		/		1	nent	/	ned1:	/		/		/		/
	1	don't Of.O	/		1		,	•		/	syab	/	lower	1	higher	/		1		1		/
Snowfall	/	days with	/-	- na 43	1	ned3		′		/	degree	/9	nutanagmat	/ •	Temperature	/		/	muminim	/WNW	itxem	/
Average	1	to nedmun	/	STOM	1	889]		<i>'</i>		/	growing	/	mumixeM	/	mum î xeM	/	y i řeb	/	Ylisb	/ A)	isb	/
	1	Average	11	11111	//	111111	///	/258.	9VA	/	Number of	//	7//////////////////////////////////////	///	///////////////////////////////////////	/ (Average	1	AVET892	/260	AVEF	/
	1		1	3 /	ų	1)}iu	•	/		/	Average	1	avad	134	4 01	/		/		1		/
	/		1	Of ni	S	Year S		1		/		/	ni ere	λsι	Z	/		/		/		/
111111111	///					111111	///	(1///	1111	//	111111111111	///	7777777777777	///	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.	////////	//	///////////////////////////////////////	////	11111	11
		noita	11	recip	d					/					รามวิธารณ์ก	a I						1

Recorded in the period 1947-76 at Kalamazoo, Michigan.

Z growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2, and subtracting the temperature below which growth is minimal for the principal crops in the area (50*f).

2.2 Site Description

- 2.2.1 <u>Physical Description</u>. The original buildings, lagoons and waste debris, once present on the Site, were removed in 1986 leaving a fairly flat, fenced, vacant lot. A concrete pad is still present in the northern section of the Site. Figure 2-B is a general Site map showing the Site as it can be found today. Detailed Site maps can be found in Appendix I.
- 2.2.2 <u>History</u>. The original building that occupied the Auto Ion Site is believed to have been constructed during the 1940's. It served as a city operated coal-fired power plant for Kalamazoo's street lights. In 1956 Consumers Power Company purchased the plant from the City of Kalamazoo. Shortly after purchasing the facility, Consumers Power Company closed it and began the dismantling and removal of salvageable materials and equipment. The property was then sold on land contract to Auto Ion Chemical Company in 1963.

Auto Ion Chemical Company commenced operations in 1964 as a plating waste treatment facility. The plant was originally designed to precipitate the heavy metals from chrome and cyanide waste. The resulting sludge was then to be disposed of at a suitable dump Site and the supernatant, created in the cyanide waste treatment, was to be discharged into the sanitary sewer system. However, inadequate waste treatment and storage may have led to a multitude of spills and illegal discharges into the Kalamazoo River, and storm and sanitary sewer systems.

During the plants operation, several violations were reported by government officials. These officials reported unapproved discharges into sanitary lines and into the Kalamazoo River directly. Also inspection by officials noted a lack of diking around storage tanks and the presence of unlabeled leaking drums (CH₂M HILL, 1984 and MDNR files).

The Water Resource Hearing Commissions made the determination that Auto Ion had violated provisions of the Liquid Industrial Waste Act (Act 136, Public Acts 1969) and the Water Resources Act (Act 245, Public Acts 1929) (Development Planning & Research Associate, Inc., 1983). In

addition, it is believed that organic fertilizer waste may have been left on the Site by an organic fertilizer company which operated out of one the buildings on the Site during the late 1960's. Auto Ion's license to haul liquid wastes and certification as a waste treatment facility were not renewed in 1973.

When Auto Ion ceased operation, the main building was abandoned with uncontained waste in the basement. There were also several storage tanks, a block house on the river, a concrete lagoon containing liquid waste and an assortment of drums left on the Site.

In 1976 James Rooney, the owner of Auto Ion Chemical Company submitted an article of incorporation for the Tropical Essence Company, located at the Site in question. Finally, in 1981 the property reverted to state ownership for failure to pay property taxes.

In 1982 fencing was installed around the Auto Ion property and plans for demolition were begun. Chemical samples were also taken in 1982.

In 1983, an Emergency Action Plan was completed by Technical Assistance Team (TAT). In accordance with the Emergency Action Plan a surface removal of contaminants on Site was conducted by OH-Materials, Inc. on behalf of the Auto Ion Steering Committee. This was followed by the demolition of the buildings, under the direction of the City of Kalamazoo in 1986.

A chronology of significant events related to the Auto Ion Site can be found in Appendix II.

3.0 SUMMARY OF FIELD INVESTIGATION ACTIVITIES

3.1 Introduction

HART's field activities at the Auto Ion Site were conducted from October 1987 through March 1988. Field activities were designed to determine if contaminants were present in subsurface soils, surface water and sediments, as well as to obtain detailed information on geologic and hydrogeologic conditions present within the Site. The greater part of the field work consisted of drilling soil borings and installing monitoring wells. In addition, a comprehensive sampling effort was instituted that consisted of sampling soil, groundwater, surface water and river sediments. During the field work, a request by the MDNR to determine the validity of allegations concerning buried drums was acknowledged and accomplished by the field team.

This chapter contains a discussion of the purpose, procedures and results of each field activity and presents the data generated by these activities.

3.2 Test Boring Operations

- 3.2.1 <u>Purpose</u>. A total of 14 test borings were drilled, 13 on-Site and 1 off-Site, by Fox Drilling Company of Itasca, Illinois. Test borings were drilled to identify the presence of contaminants and to determine the subsurface geology. Of the fourteen borings, seven were converted to monitoring wells (Figure 3-A).
- 3.2.2 <u>Methodology</u>. All test borings were drilled within unconsolidated deposits overlying the bedrock. These borings were drilled with a CME 75 using 3 3/4" x 7 3/4" hollow stem augers and 4" roller bit mud rotary depending on the depth of the boring (boring logs are located in Appendix III). The borings were advanced to the desired depth below the water table or until bedrock was encountered.

All drilling equipment used (i.e., drill bits, augers, rods, rig) was decontaminated between test borings to minimize the possibility of cross-contamination. The decontamination process consisted of the removal of bulk solids from all apparatus with a hot water, high pressure wash.

All drill cuttings off Site were brought within the fenced area of the Site. The decontamination and development water was collected and stored until disposal. Drilling mud was also collected and stored on Site for future disposal.

- 3.2.2.1 Soil Sample Collection and Analysis. Lithologic samples were collected at selected intervals (Table 3-1) in advance of the boring. Samples were collected with a two-inch diameter, two foot long split spoon sampler driven over a two foot interval with a 140 pound hammer falling 30 inches. The split spoon samplers used at each boring were decontaminated prior to sampling and between sampling using the following procedures:
 - * Scrubbed clean in soapy water with a scrub brush.
 - * Tap water rinse
 - Distilled deionized water rinse
 - * Methanol rinse
 - Distilled deionized water rinse

All sampling equipment (spoons, knives, bowls, etc.) were precleaned prior to sampling and between samples as described above. All samples were collected and described in detail by a HART field geologist during boring operations. Descriptions included:

- a. soil characteristics (type, thickness, color, etc.)
- b. description of any visual contamination
- c. approximate witer content

Samples were obtained from each split spoon with a clean knife and placed in the appropriate jars for analysis of metals, cyanide, volatile organics, acid base neutrals, pesticides and PCB's. The remainder of each sample was then placed in an 8 ounce jar for storage.

TABLE 3-1
AUTO ION SOIL BORINGS, SAMPLE DEPTHS
OCTOBER, 1987

Boring Number	Depth to Water	Depth of Sample (ft)	Sample Number		Analyses	
Wl	7.5'	0-2	S-W1-1	Organics,	Inorganics,	Pesticide/PCB
		2-4	S-W1-2	91	99	11
		4-6	S-W1-3	11	11	
		9-11	S-W1-4	11	11	tt .
		14-16	S-W1-5	••	tī	
		19-21	S-W1-6	••	II.	11
W2		0-2	S-W2-1A		Inorganics	
		0-2	S-W2-1B		Ħ	
		2-4	S-W2-2		**	
		4- 6	S-W2-3		11	
		9-11	S-W2-4		11	
		17-19	S-W2-5		•1	
W3B		0-2	S-W3B-1	Organics,	Inorganics,	Pesticide/PCB
		2-4	S-W3B-2	**	11	11
		4-6	S-W3B-3A	tr	11	11
		4-6	S-W3B-3B	11	11	11
		6 –૧	S-43B-4	31	11	TI .
		13.5-15.5	S-W3B-5	\$1	11	ŧI
		17-19	S-W3B-6	11	ŧr	11
		24-25.5	S-W3B-7	#1	11	11
		29-30.5	S-W3B-8	11	Ħ	n
		34-35.5	S-W3B-9	H	Ħ	;
		39-40.5	S-W3B-10	11	11	11
		44-45.5	S-W3B-11	11	11	" .

Boring Number		o Depth of Sample (ft)	Sample Number		Analysis
W3B (c	continued)	S-W3B-11 49-50.5	S-W3B-12	96 9E	11 11
W4		0-2	S -W 4-1		Inorganics
		2-4	S-W4-2		n
	D O	4-6	S-W4-3		11
		9-11	S-W4-4	•	11
	7. O	12-14	S-W4-5		u .
	T	19-21	S-₩4-6		11
	U S E	22- 24	S=W4-7		11
W5		0-2	S-W5-1	•	Inorgani∝
		2-4	S-W5-2		91
		4- 6			11
		6-8	S-W5-4a		11
		6-8	S-W5-4b		11
		8-10	S-W5-5		11
		14-16	S-W5-6		U
		24-26	S-W5-7		n.

Boring Number	Depth to Water	Depth of Sample (ft)	Sample Number		Analyses
W3B (cont	inued)	49-50.5	S-W3B-12	••	11 1
W4		0-2	S-W4-1		Inorganics
		2-4	S-W4-2		11
		4–6	S-W4-3		Ħ
		9-11	S-W4-4A S-W4-4B		H H
		12-14	S-W4-5		11
		19-21	S-W4-6		ŧi
W 5		0-2	S-W5-1		Inorganics
		2-4	S-W5-2		11
		6-8	S-W5-4A		11
		6-8	S-W5-4B		ti
		8-10	S-W5-5		11
		14-16	S-W5-6		Ħ
		24-26	S-W5-7		11
W6		0-2	S-W6-1		Inorganics
		2-4	S-W6-2		ti
		4- 6	S-W6-3		tt ·
		6- 8	S-W6-4		n
		9-11	S-W6-5		11
		12-14	S-W6-6a		tt
		12-14	S-W6-6b		n

THREE 3-1 (CONTINUED)

Boring Number		Depth of Sample (ft)	Sample Number	An	alysis
W6 (co:	ntinued)	14-16	S -W 6-7		11
		19-21	S-W6-8		**
B1		0-2	S-B1-1	In	organics
		2-4	S-B1-2A S-B1-2B		81 11
		4- 6	S-B1-3		**
		8-10	S-B1-4	Organic,	Inorganics
		13.5-15	S-B1-5	11	11
		18.5-20	S-B1-6	11	11
		23 .5- 25	S-B1-7	11	ŧı
		25-26.5	S-B1-8	11	11
		28.5- 30	S-B1-9	11	11
		33.5- 35	S-B1-10	11	11
		38.5-40	S-B1-11	11	#1
		43.5-45	S-B1-12	81	н
		48.5-50	S-B1-13	tt	11
		58.5-60	S-B1-14	*11	1:
		68.5- 70	S-B1-15	tt.	Ħ
		78.5~80	S-B1-16	ŧI	11
		88.5-90	S-B1-17	*11	81
		103.5-105	S-B1-19	71	11

Boring Number	Depth to Water	Depth of Sample (ft)	Sample Number	Ar	alyses
B2		0-2	S-B2-1	Organics, Pesticide	Inorganics, E/PCB
		9-11	S-B2-3	•II	11
		14-16	S-B 2 - 5	•	H
		18.5-20	S-B2-6	•	11
		23.5-25	S-B2-7	H	II .
		28.5-30	S-B2-8	. 11	11
B 3		0-2	S-B3-1	Organics,	Inorganics
		2-4	S-B3-2	11	11
		4-6	S-B3-3a	11	11
		4-6	S-B3-3b	#1	11
		8-10	S-B3-4	Ħ	11
		10-12	S-B 3-5	11	11
		13.5-15	S-B3-6	11	**
		18.5-20	S-B3-7	**	11
		23.5-25	S-B3-8	11	п
		28.5-30	S- B3-9		91
		33.5-35	S-B3-10	. 11	#1

Boring Number	Depth to Water	Depth of Sample (ft)		Sample Number	Ana	lyses
B3 (conti	inued) :	38.5~40		S-B3-11	Organics,	Inorganics
		43.5-45		S-B3-12	81	11
		48.5-50		S-B3-13	91	11
		5 8.5 – 60		S-B3-14	21	11
		68.5-70		S-B3-15	11	11
		78.5-80		S-B3-16	n	91
		88.5-90		S-B3-17	11	81
B4		0-2		S-B4-1	Ino	rganics
		2-4		S-B4-2		11
		4- 6		S-B4-3		11
		6-8		S-B4-4A S-B4-4B		11
B 5		0-2	,	S-B5-1	Ino	rganics
		2-4		S-B5-2		**
		4-6	:	S-B5-3		11
		6-8		S-B5-4		11
B 5		0-2	;	S-B6-1	Ino	nganics
		2-4	:	S-B6-2		11
		:-6	:	S-B6-3		11

Boring Number	Depth to Water	Depth of Sample (ft)	Sample Numbe∵	Analyses
B 7		0-2	S-B7-1	Inorganics
		2-4	S-B7-2A S-B7-2E	91 91
		4-6	S-B7-3	11
		6-8	S-B7-4	11

As per the work plan the soil sampling program required inorganic and organic parameters be analyzed for samples from W-1, W-3b and B-2. Samples from the remaining were analyzed for inorganics only. The boring W-3a was not sampled as it is located next to W-3b which was sampled.

3.2.3 Findings

3.2.3.1 Subsurface Characteristics. Test boring logs prepared by HART are in Appendix III. The data obtained from the test borings was used to construct cross-sections and prepare the description of Site geology provided in Section 4.2.2. Sieve analyses were run for 15 soil samples at 6 boring locations on the Auto Ion Site. The grain size distributions for these samples can be found in Appendix IV. The grain size distributions, with the exception of those for well W3-B, show well graded and gap graded sediments. The sediments range from sandy gravel at B-1, W-2 and B-3 to sediments with 90% passing the #200 sieve at B-2 and W-5. The grain size distributions indicate that the sediments present are glacial or fluvial glacial in origin.

Sieve analyses in W-3b shows very uniform sands with a D_{10} of 0.1 mm and a uniformity coefficient $Cu = D_{60}/D_{10}$ of 2. This uniform sand would allow for permeabilities of up to 10^{-2} cm/s (Freeze & Cherry 1979) greatly increasing the potential chances of contaminant transport away from this area.

Atterberg limits and permeability tests were not conducted for these samples. The values shown in Table 3-2 are representative, however, of the permeabilities that can be expected for the samples taken.

3.2.3.2 Analytical Results. The soil samples collected in the borings were sent to Century Laboratories, Inc. for inorganic analyses and United States Testing Company, Inc. for organic analyses. Tables 3-3 through 3-5 contain a summary of the analytical data. The laboratory data sheets, case narratives, and a QA/QC review of the soil sample data are contained in Appendix V.

TABLE 3-2

HYDRAULIC CONDUCTIVITIES

	Kcn/sec
Glacial Till	-7 10
Silty Sand	-3 10
Clean Sand	-2 10
Gravel	1-10

Table 3-3 AUTO ION SITE ORGANIC ANALYSIS SUMPARY SMEET FOR SOIL ALL USEABLE DATA ABOVE RDL (UG/KG)

DEPTH	9 - 11'	19 -21'	2 - 4'	4 - 6'	6 - 8'	13.5-15.5	44-45.5
COPPOUND	S-W1-4	S-W1-6	S-W3B-2	S-W3B-3B	S-W3B-4	S-W3 B-5	s-W3B-1
Chlorome thane	บ	บ	. U	บ	บ	ช	บ
Bronomethane	U	U	บ	U	บ	U	ับ
Vinyl Chloride	บ	U	U	υ	บ	U	U
Chloroethane	υ	U	U	ប	ប	U	υ
Methylene Chloride	U	บ	18	24	5	32	บ •
Acetone	R	R	110	U	39	ប	14
Carbon Disulfide	U	U	U	6 0	25	υ	U
1,1-Dichloroethene	บ	U	บ	U	υ	U	U .
1,1-Dichloroethane	υ	U	v	U	บ	υ	U
Trans-1,2-Dichloroethene	U	υ	U	U	7	U	U
Chloroform	U	U	v į	ប	บ	v	v ·
1,2-Dichloroethane	υ	${f v}$	U	ប	ប	Ü	U
2-Butanone	U	58	25	30 0	37	U	Ü
1,1,1-Trichloroethane	U	${f v}$	€	บ	٠ ع	ŗ	ü
Carbon Tetrachloride	บ	Ŭ	Ŭ	Ü	ប	IJ	U,
Vinyl Acetate	Ų	Ü	U	Ľ	v	ij	U
Bromodichloromethane	U	U	U	U	Ü	Ü	Ü
1,2-Dichloropropane	U	U	U	U	บ	ម	Ü
Trans-1,3-Dichloropropene	ប	U	U ·	U	ប	Ü	r
Trichloroethene	U	Ü	3 5	96	ľ	Ü	U
Dibromochloromethane	บ	ט	U	${\tt U}$	υ	Ü	υ
1,1,2-Trichloroethane	U	U	U	U	Ü	Ü	Ü
Benzene	U	U	U	U	ບ	Ü	Ü
cis-1,3-Dichloropropene	U	ប	U	U	ť	Ü	Ü
2-Chloroethylvinylether	U	U	Ŭ	ซ	ij	ü	บ
Braneform	U	U	Ü	Ü	ij	:	U
4-Methyl-2-Pentanone	ij	U	ប	ซ	••	ΰ	ΰ
2-Hexanone	U	Ü	U	IJ	ΰ	•	ľ
Tetrachloroethene	U	U	12	ij	"	ij	ŗ
1,1,2,2-Tetrachloroethane	Ü	บ	บ	υ	$\ddot{:}$	Ü	••
Toluene	บ	Ū	€5	12	14	•	:
Chlorobenzene	Ü	บ	Ü	Ü	Ĕ	ÿ	•
Ethylbenzene	ΰ	ับ	É	Ü	:		-
Styrene	Ü	U	Ü	บ	ij	•	Ĩ.
Total Xylenes	Ü	บ	ΰ	Ü		::	Ü

Table 3-3 (cont.) AUTO ION SITE

ORGANIC ANALYSIS SUMMARY SHEET FOR SOIL ALL USEABLE DATA ABOVE RDL (UG/KG)

DEPTH COMPOUND	8 - 10' S-B1-4	8 - 10° S -B 3-4
Chloromethane	U	U
Bromomethane	U	U
Vinyl Chloride	บ	U
Chloroethane	U	U
Methylene Chloride	870	U
Acetone	บ	10
Carbon Disulfide	U	U
1,1-Dichloroethene	U	U
1.1-Dichloroethane	U	U
Trans-1,2-Dichloroethene	U	U
Chloroform	บ	U
1,2-Dichloroethane	บ	U
2-Butanone	9500	9
1,1,1-Trichloroethane	Ŭ	U
Carbon Tetrachloride	บ	U
Vinyl Acetate	U	U
Bromodichloromethane	Ŭ	U
1,2-Dichloropropane	ប	U
Trans-1,3-Dichloropropene	บ	บ
Trichloroethene	ប	บ
Dibromochloromethane	ប	U
1,1,2-Trichloroethane	U	U
Benzene	U	U
cis-1,3-Dichloropropene	U	U
2-Chioroethylvinylether	ប	ប
Bromoform	U	U
4-Methyl-2-Pentanone	ប	U
2-Hexanone	ប	U
Tetrachloroethene	3100	U
1,1,2,2-Tetrachloroethane	ប	Ŭ
Toluene	8000	U
Chicrobenzene	บ	U
Ethylbenzene	4200	Ü
Styrene	6400	Ū
Total Xylenes	31000	บั

U= Below CRDL R= Unuseable data

Table 3-3 (cont.)

MITO ION STITE SEMIVOLATILES MOLYSIS SEMONY SHEET FOR SOIL ALL USENNEE DATA ABOVE CHIL (UG/NG)

Principle Seal Se		DD719	0 - 2'	3 - 11.	23.5-25'	2 - 4'	4 - 6'	9 - 11'	14 - 16'
International Content Inte		COPCUID	5 -8 2-1	S -B 2-3	S -B 2-7	S-V1-2	s-V7-3	S-W1-4	S-VI-5
Chicrostensee Chic			U	ช	-	U	บ	บ	U
1.3-Phichlorobeansee			-	-	-	-	-	_	
1.4-Discriptochemisters			-	_		-	-	-	-
Seamy Alcohol		•••	-	*		-	-	-	_
1.3-Th.chlorobensme				-	_	-	-	_	-
Int 1 - Allocomesocropy exhate C		1,2-Dichlorobenzene	_	บ	U	υ	υ	ប	ប
#**Hitranchi-m-charcopylamne				-	-	-	-	-	-
M-ht tracerdstipropylemne							-		
Becomach Increase			-	_	-	-	-	_	_
M. trobensee			-	-		-	-	-	
3-Historephenol			-	บ	Ū	บ	Ū	U	U
Denote action Denote Den			-	_	-	-	_		
Denote				-		-	_		
Description		* ·	-		-	_	_	-	-
2.4-Prichlorophanol 9 U U U U U U U U U U U U U U U U U U			-	_	-	-	_	-	
Naphthalene			-		บ	-	บ	-	
#-Chloroganitine					-	-	-	-	-
Househlorobutediene			_		_	-	-	-	
### Chlory-J-methylphenol			-	_	-	-	-	-	
2-Methylnephthalene			-	_	-	_	-	-	_
Haronainforcognetopenstations			-	-	-	-	_	-	_
2.4.5-Trichlcropemol		• •	Ü	Ü	Ū	Ü	Ū	Ü	U
2-Chloromaphthalme			-	_	-	-	_	-	-
2-Nitronniline			-	_	-	-	-	•	-
Dimethylphthalate			-	_	-	-	-	-	-
Accessitive			-	-	-	-	-	•	-
2.6-Dinitrotoluene U U U U U U U U U U U U U U U U U U			-	-	-	-	-	-	
Acanaphthene		2.6-Dinitrotoluene	•	U	-	-	-	-	-
2.4-Dinitrophenol U U U U U U U U U U U U U U U U U U U			-	-	-	_	-	-	-
### Aftirophenoi			-	-	_	-	_	-	_
Dibenzofuran U		•	•	_	-	-	_	-	-
2.4-Dinitrotoluene U U U U U U U U U U U U U U U U U U		_	-	-	-	_	-	-	-
## Chilorophemyl-phemyl ether U U U U U U U U U U U U U U U U U U U			Ü	-	บ	ซ	บ	Ü	Ü
Flucrence U U U U U U U U U U U U U U U U U U U		Diethylphthalate	-		-	_	-	-	-
4-Nitremiline U U U U U U U U U U U U U U U U U U U			_	-	•		-	-	-
4.6-Dinitro-2-methylphenol U U U U U U U U U U U U U U U U U U U			-	-	-	•	-	-	_
N-nitresodiphenylamine			-	-	-	_	-	-	_
### ##################################			-	_	-	-	-	_	Ū
Pentarthloruphenol		4-Bromophenyl-phonylether	-	•	•	•	•	•	•
Phesenthrene									
Section 11000 370			-		_	_	-	-	
Si		Section	-			-	_	-	
Pyrese	j.	hi-m-hurylphthalate					-	-	_
Butylhensylphthalate	3	Theoreachene	11000	_	U		U	บ	
3,3'-Dichorobenzidine U U U U U U U U U U U U U U U U U U U				_	_	-	-	-	
Benzo (a) anthracene		Butylbensylphthalate	_		-	_	-		_
Chrysene U 670 U U U U U U U U U U U U U U U U U U U			_	-	_	_	-	-	_
bis (2-Ethylhenyl) phthalate U 1400 940 510 1400 690 730 Di-n-octylphthalate U					-	-	-	_	
Di-m-octylphthalate		bis (2-Ethylhenyl) phthalate				-	•	-	
Benzo (k) fluoranthene		Di-n-octylphthalate	-	-		_	_	_	
Benzo(a)pyrane			-		_	-	_		
Indemo(1,2.3-cd)Pyrene U U U U U U U U Diberno(a,h)Anthracene U U U U U U U Benno(g,h,i)Perylene U U U U U U U							_	_	
Diberato(a.h) Anthracene						-			-
Benzo(g,h,i)Perylene 'U U U U U U U		Dibetito (a.h) Anthracene						-	
3-Mitroaniline U U U U U U		Benno(g,h,i)Perylene	ີ ບ	บ		บ	υ	-	
		3-Mitroeniline	Ü	Ü	บ	Ü	U	ט	U

Table 3-3 (cont.)

AT USDAY DATA MONE COOL (NG/NG) SDOWNATILES MALVESTS SHADOV SHEET FOR SOIL AND TON STIT.

ਅਰਗਸ਼ਸ਼ਰਹਰਰਸ਼ਰਦ ਮੂੰ ਦੇ • ਜੋ ਦੇ ਜੋ ਜੋ ਦੇ ਜੋ	्र ।	2: 2	######################################
w	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T 🚣	TO SECOND TO COMPANY COLOR COL
ਲਹਿੰਦ ਦੇ ਜ਼ਿਲ੍ਹੇ ਜ਼ਿ	: COM COM W W CO CO CO W CO W CO CO CO W CO W	:೧೫೧೫೪೪೮ವವರವಾದಶ ವವಸವವರ 💆 💂	

Table 3-3 (cont.)

AUTO ION SITE SECONDATULES MOLISIS SUMAR. SMEET P.J. SOIL ALL USEAULE INTO MOVE CHILL (MA/ME)

		MIL	OSDALE DEL	MOVE COLL
DOTE	17 - 19	24-25.51	29-30.51	39-40.5"
			•. •	
CORPORA	S-¥39-6	S-1/30-7	8-432-8	S-439- 10
Phenoi	ט	:	ນ 	:
bis(2-Chlorosthyl)ether	ü		ü	ü
3-31 oropheno)	?	÷.	ij	Ŭ
1.3-Dichloroenzene	ິນ		ü	Ľ
1,4-Dichlorcommene	ij	Ü,	ŭ	r :
Bennyl alcohol	Ü	υ υ	ü	
1.3-Dichlorobenzene	ü		ü	. U
2-Hethylphanol	R	¥	U	ľ.
bus(2-Chlorousopropyl)etner	U	Ü	Ü	υ
4-Hethylphenol	R	ບ	Ü	ט
N-Stroso-di-o-dipropylamine	U	v	บ	υ
Herachiomectane	Ü	υ	ľ	ľ
Nitrobenzene	R	r	U	υ
Isophorone	U	r	ť	ľ
2-Mitrophenol	F.	v 0 0 0 0 0	ť	U
2.4-Dimethylphenol	F	ï	v.	υ
Benzoic acti	F	Ç	ľ	Ü
bis(2-Chloroethoxy)methane	U	ľ	Ü	U
2.4-Dichlorophenol	Æ	Ü	U	υ
1,2,4-Trachlorobenzene	U	υ	ΰ	ľ
Naphthalene	ľ	υ	r ·	U
4-Chloroanitine	υ	Ü	Ü	ü
Bezachiorobutaciene	U	υ	. U	ľ
4-Clicro-3-methylphenol	· R	υ ·	υ	Ľ
2-Methylhaphthalene	υ	ï	ľ	t
Hexachlorocyclopentachene	. ປູ		ΰ	ť
2,4,6-Trachlerophenol	R	u u	ľ	t t
2,4,5-Truchlorophensi	F.	÷	Ü	Ü
2-Chloronaphthalene	Ü	ë	้ บ้	Ü .
2-Witroaniline	บ้	เย	บ	Ü
Dinethylphthalate	ľ	Ü	ľ	Ü
Acenaphthylene	บ	ë	บ	ť
2.6-Dinitrotoluene	U	Ü	· Ľ	ΰ
	υ	ย	ני	į
3-Witroaniline	Ľ	ย	ט ט	ย
Acenaphthene	_			
2.4-Danitrophenol	P.	÷ ;;	٠. ••	Ľ.
4-Nitrophenol	£ .	;	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t U
Diberzofurar.	u	<u>.</u>		υ ••
2.4-Dinitrotoluene	ľ		č	Ľ
Diethylphthalate	Ü	i.		L
4-Chlorophenyl-phenyl ether	ľ	Ü	Ü	ŗ
Flaren	ŭ,		Ü	
4-Mitroariline	Ľ.	Ü		. U
4.6-Danatro-I-methylphenol	£	Ľ,	U U	
N-mi trosodi phenyl amine	. ::		Ľ	Ü
4-Erocophenyl-phenylether	υ	ΰ	Ü	:
Revachiorobenzene	U	υ	ľ	ü
Pentachlorophenol	E	Ü	Ü	ľ
Phenanthrene	Ľ	Ü	ប	- t
Anthracene	F.	ι :	r ·	C
Di-n-burylphthalate	3200	1 700	F.	Ŧ.
Fluoranthene	ľ	·::	ľ	
Pyrene	ť	•	r ·	υ
Butylbentylphthalate	υ	5:1	1200	1600
3,3 ¹ -Dicharabenzidung	U	ប	υ	υ
Penzo (a) anthracene	υ	:	, v	ΰ
Chrysene	r	v.	ั้ย	r
bis (2-Ethylheryl) phthalate	Ü	2400	P.	}
Di-n-octylphthalate	ŕ		ΰ	•
Benzo(b) fluoranthene	·		ÿ	
Benzo(k) fluoranthene	ï		;	•
Benzola, pyrene	ï		្ដ	
Indeno(1,1,3-cd)Pyrene	••		ï	7
Dibenzo (a.h) Anthracene	Ü	. ;	ΰ	•
Dinemo (g.h.i) Perylene	Ü		Ü	••
benzo(g.n.i)reryiene 3-Nitroaniline	!		1:	
JTG LIDERI LINE			U	L

ANTO ION SITE DIORGANIC ANALYSIS SUPPARY SHEET FOR SOILS ALL USEANLE DATA ABOVE RIL (MG/KG)

BEAGE	0 - 2.	2 - 4.	2 - 4.	.9 - 7	8 - 10	13.5-15'	18.5-20'	23.5-25'
NETAL	S-B1-1	S-B1-2A	S-81-28	S-B1-3	S-B1-4	5-181-5	S-81+	S-B1-7
Aluminum	2672	3318	3392	2000	5585	1816	5236	6400
Antimony	Þ	Þ	13.0	Þ	n	Ð	Þ	D ·
Arsenic	80.0	50.0	62.0	22.0	7.4	2.4	4. 9	5.0
Barium	131.0	D	Þ	35.0	Ω	Ð	Þ	a
Beryllium	Þ	D	Ω	a	Þ	Þ	p	D
Cadmi un	Ð	ם	Ω	Ď	1.6	Ð	1.0	5
Calcim	16200	1909	2319	2094	40700	52600	68800	00737
Chronium	2433.0	0.096	839.0	133.0	0.26	0.39	14.0	14.0
Cobalt	Þ	;	ä	a	n	Ð	а	q
Copper	181.0	32.0	37.0	50.0	187.0	40.0	7.6	8.7
I or	45200	20102	23000	24100	15400	5718	10700	21700
Lead	928.0	5.2	9	გ. ა.	4.1	ж	5. 5.	5.7
Oyanide	4.1	1.2	9.4	æ	জ মূ	ρ;	g	ĸ
Magnesiur.	100t	Þ	100€	1492	13500	3026	23200	26200
Yanganese	e e e	0.63	52.0	0.46	483.0	145.0	258.0	285.0
Ver oury	0.20	đ	ဌ	ລ	Ę	07.3	; <u>;</u>	07.0
Nickel	25.0	6.1	υ, Γ'	12.0	131.0	140.0	16.0	19
Potassium	338 8	1964	24 27 27	3530	; ɔ	; ;	60	1300
Selenium	ນ	Þ	: 3	ສ	Þ	; :	:>	Ð
Silver	c ;	Þ	: 4	ţ,	a	;a	Ð	Ð
Sodium	n	p	æ	Ð.	Ð	a	n	다 6
Thellium	ລ	Þ	;p	a	a	5	ະ	Ð
Vanačium	15.0	11.0	12.0	20.0	Ð	n	0	6.5
Zinc	43.0	18.0	O	33.0	0.131	100.0	35.0	35.6

THE BELOW POL

R= Unuseable data

.:3	3/2	8*3	773	34.0	0.21	0.42	0.55	ουτζ
a	a	a	a	€.3	n	a	5.8	m/thensV
a	a	a	Ω	Ω	α	n	Ω	willsdT
α	a	a	<u>.</u>	a	a	Ω	Ω	muibo2
a	a	a	2	2	î	a	Ω	Silver
2	a	a	, a	a	a	.	U	Selenium Selenium
a	a	<u></u>	a	a	î.	n	Ω	intessio4
Ω	Ω	a	r.	ortt	a	a	3.3	Mickel
î.	Ω	n.	a	c.	a	Ω	a	Amosey
0.34	o:0 s	0.72	01.59	01141	0.37	61840	01747	#sensgand
L13 7	43 97	J30 9	6079	T3200	6936	C09EI	C096 T	misə me M
Ã	я ́	a	r.0	Ä	a	2.	Ä	ebin s vO
a	.	n	Ω	[· •	3.1	\$.8	3.5	Lesd
36 / T	5541	99 8 I	2016	263 2	£0 3 Z	CCETT	£123	Ical
Ω	n	Ω	Ω	<i>L</i> .8	n	1.3	9*7	copper
Ω	n	Ω	Ω	Ω	Ū	a	a	J_SdoD
3 .2 1	0.51	0.21	12.0	0.71	0.21	0.21	0.3	Chronium
00691	CC89 T	16500	18200	32300	00855	36200	22500	משלבי לאו
n	Ω	Ω	n	n	Ω	u	1.1	an imbed
Ω	Ω	u	a	n	n .	u	Ω	Beryllium
n	n	n	n	n	n	n	n	mirse
n	n	α	n	8.2	n	2.9	8.2	Yrse vic
n	U	Я	Я	Я	. .	Я	Ω	Anchiamy
. L99	869	DLL	₹ LL	9 232	1043	∠69€	2880	annian [A
2-BI-12	2 - 81-14	61-1 4- 5	21-19-S	11-1 8- \$	2-B1-10	6-1 4- 5	8-1 8- S	HELLYT
.0L-S.89	.09-9-85	.0 5-5 -8 1	,SP-9°EP	38.5-40'	.98-5.68	.0E-8.8Z	.g-9 z-5 Z	RLAGO

VIT REEVER'S DYLY VECAS KIR (HC/KC) INCHONIC MOTAZIZ ZNEOKA ZHEEL LOB ZOITZ THE NOT OFTH

ALL USERBLE DATA ABOVE RTH. (MC/KG)

ET-TH	78.5-80	88 .5–90.	103.5-105'	0 - 2.	9 - 11.	14 - 16.	18.5-20'	23.5-25'
METAL	S-B1-16	S-81-17	S-81-19	S-82-1	S-B2-3	8-82-5	8-8 2+	5-82-7
Munimum	217	740	744	4309	1792	2799	824	5459
Antimony	Ð	Þ	n	∝	æ	æ	es	∝
Arsenic	Þ	Þ	.	a .	Ð	8,5	Þ	16.0
Barium	a	Ð	Ð	Ð	ລ	D	n	85.0
Beryllium	Þ	Ð	n	Ð	Ð	Þ	Þ	a
Cadrium	þ	ם	D	Ð	n .	n	n	D
Calcium	1962C	24800	262 00	73100	7395	45000	18300	63700
Chronium	18.0	53.0	42.0	39.0	0:36	334.0	16.5	38.0
Cobalt	D	Ð	n	Ð	.	a	a	Ω
Copper	c ;	р	n	0.09	6.7	13.0	n	25.0
당	2323	2233	3790	8572	4570	10601	2992	12300
Lead	;	न	Ð	5.6	6.0	5.9	2.7	27.0
Cyanide	jk.	ρί	Æ	0.3	n	L1	Þ	6.9
Nagnesium	აგ †	7365	8650	26300	22600	14500	5687	10500
Manganese	() () ()	65.0	121.0	256.0	145.0	217.0	79.0	318.0
Keroury	þ	p	p	œ	μi	, sec	μί	0.30
Nickel	: 2	Þ	p	62.0	0.35.0	26.0	30.0	21.0
Forassiu	ដ	a	Þ	D	ဌာ	p	:	:-
Selenium	a	Þ	D	Ð	p ·	Þ	p	Þ
Silver	· Ω	Ç	Ç	9	Б	:	្ន	Þ
Sodium	a	:	p	Δť	ᄕ	ec.	şt.	æ
Thallium	n	ລ	a	Þ	: 2	a	Ę	a
Vanadiu.	a	p	c	0.01	5	18.0	:3	3.0
2000	\# 0\		or of	36.0	14	0°38	41;	Ci Oi Vi

3-20
Table 3-4 (cont.)

AUTO ION SITE DIORGANIC ANGLYSIS SUMMARY SMEET FOR SOILS ALL USEABLE DATA ABOVE ROL (MG/RG)

DEPTH	28.5-30'	0 - 2'	2 - 4'	4 - 6'	4 - 6'	8 - 10'	10 - 12'	13.5-15'
HETAL	S-B2-8	S-B3-1	S-B3-2	S-83-32	S-B3-3B	S-B3-4	S-B 3-5	S-B 3-6
Aluminum	11700	4003	3424	259 8	3127	11700	1817	1349
Antimony	R	υ	ŭ	υ	υ	υ	· v	U
Arsenic	20.0	9.7	3.8	3.8	4.8	10.0	11.0	U
Barium	152.0	68.0	52.0	U	47.0	122.0	υ	U
Beryllium	U	υ	U	υ	U	υ	υ	U
Cadmium	U	υ	1.0	υ	U	U	Ü-	บ
Calcium	41200	32400	33800	16600	19500	4 537	2840 0	2660 0
Chromium	535.0	17.0	15.0	7.4	9.3	21.0	7.5	15.0
Cobalt	υ	U	υ	U	υ	U	U	ប
Copper	119.0	24.0	16.0	11.0	12.0	12.0	22.0	29.0
Iron	63700	100 0	8 023	7788	97 90	32400	6709	3739
Lead	23.0	4 2.0	24.0	18.0	19.0	12.0	2.1	υ
Cyanide	4.4	0.4	0.6	0.8	0.7	ប	R	ប
Magnesium	78 09	5200	10600	6722	7084	2663	11700	75 58
Manganese	1352.0	310.0	239.0	20 0.0	254.0	168.0	76.0	76.0
Keroury	£	0.20	U	U	υ	บ	U	ប
Nickel	89.0	16.0	12.0	บ	2.7	9.6	30.0	37.0
Potassium	2971	ט	U	2570	υ	U	Ľ	Ü
Selenium	U	υ	υ	U	υ	v	Ü	υ
Silver	υ	U	υ	U	บ	r	ľ	U
Sodium	5339	U	U	υ	U	υ	บ	บ
Thallium	υ	U	υ	υ	υ	υ	υ	v
Vanadium	30.0	12.0	11.0	U	11.0	31.0	U	บ
Zinc	145.0	49.0	42.0	36.0	38.0	67.0	27.0	39.0

3-21 Table 3-4 (cont.)

DURCHEC MALYSIS SUPPRIN SHEET FOR SOILS ALL USCHELE DATA ABOVE FOL (NG/NG)

HAR	23.5-25	28.5-30	33.5-35'	38.5-40'	43.5-45	48.5-50	58.5-601	68.5-70
THE	S-B3-8	S-B 3-9	S-83-10	S-B3-11	S-B3-12	S -U- 13	S-83-14	S-B3-15
Munipum	930	<i>91</i> 7	305	986	1100	1017	90L	818
Antimony	Ð	n	Ð	Þ	Þ	n	D	Þ
Arsenic	n	Ð	0.0	D	Þ	ב	n	D
Barium	ສ	n	a	ລ	Ð	Þ	ង	5
Beryllium	p	a ,	Ð	n	n	n	ລ	Þ
Cadmum	Þ	a	ဆ	n	n	n	ສ	Þ
Calcium	18800	19300	21900	24300	24600	25900	22900	2000
Chronium	40.0	15.0	10.0	10.0	0.11	59.0	5. 5.	12.0
Cobelt	Þ	a	U	Ð	IJ	n	Þ	Þ
Copper	Þ	þ	; э	Þ	Ð	7.9	a	Þ
Iron	2069	2024	2124	2123	3148.	1392	2013	2191
i eai	n	1.7	t)	B	æ	ກ	a	c
Carace	c;	Þ	; 5	Þ	n	n	Ð	Þ
Magnesium	5556	8833C	ୁଖ୍ୟେ	7236	7234	5956	8177	7135
Manganese	÷	0.77	0.65	0 1	75.0	0.27	65.0	65.0
Ler Cury.	Þ	Þ	: 3	Þ	n	2.8	09.0	្ធ
Mickel	Þ	Þ	p	B	æ	10.0	Ð	a
Foressium	c ;	Þ	:.	5	ង	n	:	5
Selenium	: 3	Þ	13	Þ	Þ	Ę	a	£ 3
Silver	c ;	Þ	;	a	ta C	р	p	a
Socium	ກ	a	į,	p	a	Ω	a	Ð
Thallium	n	a	э	Þ	q	D	ສ	Ð
Vanadiu:	D	n	;)	ę	c;	a	æ	Ð
244.0	in	r.	'i,	<u>.</u>	<i>ئ</i> ئ	0.11	0 9	ر. ني

3-22 (cont.)

MOTO TON SITE INCREMIC MOLLYSIS SUPPLY SHEET FOR SOILS ALL USEABLE DATA ABOVE RIL (MG/KG)

DEPTH	78.5-80'	88.5-90'	0 - 2'	2 - 4'	4 - 6'	6 - 8'	6 - 8'	0 - 2'
METAL	S-B3-16	S-B3-17	S-84-1	S-B4 -2	S-B4 -3	S-84-4A	S-84-4B	S-B5-1
Aluminum	717	2141	30 05	1734	2988	4803	5013	2668
Antimony	U	R	R	R	R	R	R	R
Arsenic	U	υ	5.7	3.8	3.4	11.0	8.3	18.0
Barium	U	υ	υ	υ	Ü	595.0	517.0	80.0
Beryllium	บ	U	U	Ü	υ	U	U	U
Cadmium	Ü	υ	υ	U	U	U	U	v
Calcium	21200	91200	5140 0	72100	35500	43500	28400	26890
Chronium	18.0	174.0	2 5.0	18.0	19.0	29 68.0	25 £1.0	371.0
Cobalt	U	ŭ	υ	Ů.	υ	U	υ	U
Copper	υ	12.0	13.0	7.1	16.0	949.0	824.0	154.0
Iron	1943	7223 .	13600	5502	6372	17990	17600	16600
Lead	U	5.0	8.7	1.9	7.2	34.0	23.0	€2.0
Cyanide	U	3.2	. 3.0	0.4	R	18 3.0	231.0	4.3
Magnesium	654 0	12500	15100	27000	11490	14400	9711	7751
Manganese	57.0	221.0	299.0	138.0	182.0	289.0	311.0	143.0
Hercury	υ	0.10	ľ	U _.	· u	··U	U	0.20
Nickel	16.0	27.0	13.0	12.0	15.0	1449.0	1159.0	403.0
Potassium	U	U	· v	บ	υ	υ	v	ü
Selenium	ប	v	ť	U	Ů.	Ľ	υ	ij
Silver	U	v .	ť	. :	v v	U	· . v	·
Sodium	Ū	R	v	. n	υ	υ	· • • • •	ÿ
Thallium	ŭ	บ	ŭ	υ ·	ŭ	v ·	· U	Ü
Vanadium	U	บ	17.0	U	7.¢	11.0	r	10.0
Zinc	7.€	106.0	29.0	22.0	32. 0	539.0	435.0	201.0

2 - 4.	.2 - 0	.9 - Þ	5 - 4.	.2 - 0	.8 - 9	.9 - 1	S - 4.	RLEGG
AS-18-2	I-18-8	€-9 €- \$	Z-9 €- \$	T-9 E- S	P-58-S	€-5 8-5	2-9 4- 5	TVARE
5466	96Z£	2002	LSRL	8ZTL	OURT	selt	<u> </u>	<i>न्यातांना गृ</i> ष्ट
a	Я	Я	Я	Я	R	Я	Я	Anchiston
Я	4.8	4.3	0.6	0.8€	2.6	8.£	3.4	Arsenic
294.0	n	0.48	n	0.082	n	n	0.54	Be ri <i>u</i> m
Ω	n	Ω	n	n	n,	u	u	Beryllium
L.\$.	n	Ω	3.5	2.9	n	n	n	mu imbsD
COSTE	22500	14100	43800	00 7 LZ	3073	1013	7291	Calcium
0.2725	ଧୀ ରେ	310.0	7423.0	0.7021	0.618	0.604	0.615	Circuit mi
Ω	n	u	n	n	. n	n	n	್ತೆ <u>್</u> ತಿ40೨
4141.0	0.34	143.0	·0·2 79	1203.0	133.0	J46.0	0.04	reqçoo
Ā	CS₹L	Z30 6	C 08ZI	76500	1926	IOSOC	73600	uoa <u>r</u>
175°0	2.8	0.22	12.0	362.0	ל'ל	6°€	5°G	L ead
Ä	5 .9	9.2	0.71	5.0	75410	0.72	5.1	<i>€∑ani</i> de
2 2 49	COLLI	\$60 ;	9786	9698	Ω	ZOII	IETT	mitsems#
128.0	0*683	0.301	0.21.	9.102	0107	0.29	01571	eseustu e %
∂ ₹10	02.0	01.0	Ω	02.0	a	r.	a	Kenomik
0.0234	0.2 7	0.378	 0°2301	0.0201	01419	0°9 9T	0*79	LaxoiM
	 a	 n	 Ω	 a	Ω.	 n	<u></u>	misssio4
a	n.	 C	n	Ω	n	 n	ū.	microfes
a a	a a .	n n	a a	n n	a	n a	n n	Silver .
n	3	u	Ω	a a	Ω a	n o	Ω	millsdr.
Ω	a	Ω	.0171	6°5	n o	0.11	0.21	minsasy
305810	018 ₹	0.108	36410	0.2721	0.841	0.35	0.12	cuti
•						-		

NTF RESPONDE DELLY VECAGE MOR (MC/MC) DICHEMIC MOTARIZ REPORT RESET FOR SOILS WILLO ION SILE

3-23 (cont.)

24 5123 (\$1.20 \$1.

Table 3-4 (cont.)

AUTO ION SITE DIORGINIC MULTISIS SUMBARY SHEET FOR SOILS ALL USEABLE DATA ABOVE RILL (MG/NG)

DEPTH	2 - 4'	4 - 6'	6 - 8'
HETAL	S-B7-2B	S-B7-3	S-B7-4
Aluminum	3113	6266	230 5
Antimony	R	R	R
Arsenic	R	0.0	27.0
Barium	277.0	97.0	υ
Beryllium	υ	U	u
Cadmium	1.6	12.0	U
Calcium	32500	19800	5276
Chronium	1440.0	3521.0	2071.0
Cobalt	U	24.0	U
Copper	1831.0	10100.0	617.0
Iron	R	14200	6776
Lead	140.0	30.0	6.5
Cyznide	R	4.0	15.0
Magnesium	6899	3686	1114
Manganese	98.0	54.0	29.0
Mercury	0.80	1.60	U
Nickel	2061.0	1094.0	8 5.0
Potassium	U	υ	U
Selenium	U	U	U
Silver	บ	4.4	υ
Sodium	υ	ប	ü
Thallium	U	υ	υ
Vanadium	Ü	18.0	U
Zinc	790.0	589.0	24.0

24.0	57. 0	14.0	3.61	0777	0.88	9:27	0.04	Sanc
2	. .	u	a	2	0.20	a	9,01	muthsas?
5**	2.3	n	Ω	Ω	a	n	a	milled?
a		n	ā	a	a	a ·	a	20 575
a	:	n	.		a	a	:	Silver
a	a	a	a	a	a	a	a	mtuajas
a	a	a	a	.	a	n	c.	Tuizasio:
J.3 <u>I</u>	0162	. n _.	a	n	4.5	n	514	[ańo <i>t</i> it
ä	Ã	n	Ω	a	a	.2	5010	RecomA
¥	3	oratt	0.221	0.081	0.3001	0.952	0°138	ಕಿತಕಿರಾಭಿಗಾಗಿ
11200	9999	COSII	ccizi	00701	0938	9719	9879	्या: इड ्यार्ट्ड
<u>a</u>	a	R	ਬ	*	4	ä	Ħ	ಭಾಗಾಭ
0.75	<u>9</u> *6	1.2	1.3	2.2	0.51	0.08	0.82	basi
Ā	Ā	09/7	3807	9669	50702	10200	7636	noni
0.92	Ω	n .	Ω	Ω	9. 7	0.81	0.51	ಸತಿನ್ನರ
n	Ω	n	n .	n	Ω	U	n	tisdo
0.38	13.0	0.9	0-7	₹°6	0.21	I.T	3.11	בשתשתקת
Ŧ.	A	COTEN	COSTÉ	COTF9	986 6	00E9T	31400	العلاديس
Ω	n	n	U	n	n	n -	n	mirries
n	U	n	n	n	n	n	Ω	Beryllium
Я	Я	Ω	n	n	0.69	u	0.04	mirsa
n ,	n	n	Ω	n	0°0T.	3.5	6.5	Arsenic
В	Я	Я	Я	A .	Я	Я	Я	Vnontank
Я	Я	ELZT	138	5117	6117	3340	2543	michila
S-u2-lb	YT-ZM-S	9-TA-S	S-TM-S	d-th-s	e-th-s	Z-IM-S	T-TM-S	TYLEN
٥ - ي	٥ - ٢.	18 - ST.	.9T - PT	.TT - 6	19 - 7	5 - 4.	.2 - 0	HL.COC

MIT RESMITE DILLY MICHE NOT (NC/MC) INCHEMNIC MATAZIE 27950MA 28551 LOB 2011'2 MILO ION 2115

್ರಾರ್ ಇನ್ನು ನಿರ್ವಹಿಸಲಾಗಿ ಪ್ರತಿಕ್ಷಾಗಳ ಪ್ರಕ್ರೀ ಸಂಪ್ರಾಸ್ತ್ರಿಕ್ಕ ಸಂಪ್ರತಿ ಪ್ರತಿಕ್ಷಾಗಿ ತಿರ್ಮಾತ್ರಿಗಳ ಪ್ರಕ್ರಿಸಿಕೆ ಪ್ರಕ್ರಿಸಿಕೆ ತಿರ್ಮಿಸಿಕೆ ತಿರ್ಗಾಹಿಸಲಾಗಿ ಪ್ರಕ್ರಿಸಿಕೆ ತಿರ್ಗಾಹಿಸಲಾಗಿ ಪ್ರಕ್ರಿಸಿಕೆ ತಿರ್ಗಾಹಿಸಲಾಗಿ ಪ್ರಕ್ರಿಸಿಕೆ ತಿರ್ಗಾಹಿಸಲಾಗಿ ಪ್ರಕ್ರಿಸಿಕೆ ಪ್ರಕ್ರಿಸಿಕೆ ತಿರ್ಗಾಹಿಸಲಾಗಿ ಪ್ರಕ್ರಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ರಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ರಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ತಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ತಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ತಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕೆ ಪ್ರಕ್ಷಿಸಿಕ

3-26 Table 3-4 (cont.)

MATO ION SITE DICROMIC MOLLYSIS STRONG SHEET FOR SOILS ALL USEANLE DATA ABOVE RIL (MG/MG)

DEPTH	2 - 4'	4 - 6'	9 - 11'	17 - 19'	0 - 2'	. 2 - 4	4 -6'	4 - 6'
HETAL	S-12-2	S-W2-3	S-V2-4	S-V2-5	S-W3B-1	S-V39-2	S-W39-3A	S-W38-38
Aluminum	6439	4740	9 57	294 9	4464	2033	89 12	7198
Antimony	R	R	R	R	บ	U	U	U
Arsenic	υ	5.8	ט	7.4	4.5	υ	38.0	U
Barium	75.0	U	บ	υ	45.0	71.0	R	R
Beryllium	U	U	U	บ	υ	υ	บ	υ
Cadmium	U	U	U	. U	4.8	U	U	U
Celcium	22300	υ	32500	6600 0	4760 0	13900	2970 0	22200
Chromium	177.0	18.0	13.0	27.0	1010.0	681.0	1798.0	2116.0
Cobelt	υ	บ	υ	U	υ	υ	U	υ
Copper	28.0	υ	υ	6.4	445.0	2 22.0	444.0	663.0
Iron	17600	101200	3067	94 58	14600	42700	2690 0	24500
Lead	4.7	4.2	3.5	5.5	7 0.0	28.0	60. 0	6 €.0
Cyanide	υ	ט	υ	U	R	R	R	5.3
Magnesium	4145	1167	7019	14600	15500	U	י	U
Manganese	421.0	224.0	82.0	30 1.0	243.0	4 7.0	184.0	135.0
Mercury	R	R	R	R	0.20	1.80	4.10	5.10
Nickel	87.0	ט	υ	41.0	333.0	112.0	651.0	431.0
Potassium	1402	U	υ	υ	U	2383	U	U
Selenium	υ	υ	บ	υ	υ	บ	U	U
Silver	U	U	U	บ	υ	ប	υ	U
Sodium	4235	บ	υ	U	v	ប	U	U
Thallium	U	4.4	υ	υ	U	Ū	U	U
Vanadium	14.0	13.0	υ	v	14.0	14.0	16.0	16.0
Zinc	92.0	16.0	٤.7	24.0	631.0	57.0	720.0	50 6.0

Table 3-4 (cont.)

NUTO ION SITE DICRONIC MOLLYSIS SUPPRY SHEET FOR SOILS ML USEABLE DATA ABOVE ROL (MG/KG)

DEPTH	6 - 8'	13.5-15.5'	17 - 19'	24-25.5'	29 -30.5'	34-35.5'	39-40.51	44-45.5'
METAL	S-W3B-4	S-¥3B-5	S-W3B-6	S-W3B-7	S-W3B-8	S-W3B-9	S-W3B-10	S-W3B-11
Aluminum	309 8	2375	68 55	1170	691	591	54 2	934
Antimony	บ	U	U	22.0	ប	U	U	บ
Arsenic	u	4.0	U	U	U	U	U	U
Barium	U	U	บ	U	U	υ	υ	บ
Beryllium	บ	U	υ	υ	υ	U	U	U
Cadmium	υ	U	υ	υ	U	U	U	U
Calcium	5589	42000	72200	23100	17200	1590 0	1590 0	20700
Chronium	1863.0	205.0	26.0	16.0	11.0	13.0	12.0	13.0
Cobalt	υ	ប	U	, v	υ	υ	ប	U
Copper	1135.0	47.0	7.8	U	U	υ	v	U
Iron	13600	9293	12800	2660	1630	1580	1540	2480
Lead	21.0	3.4	4.0	U	U	Ü	U	U
Cyanide	£	Ľ	U	υ	U	U	v	v
Magnesium	13 23	12100	25500	7500	4 260	4710	4510	5820
Manganese	64.0	194.0	283.0	66.0	41.0	44.0	41.0	5 £.0
Mercury	0.40	0.10	£	บ	υ	Ľ	Ü	ï
Nickel	477.0	184.0	16.0	บ	บ	υ	r	v
Potassium	Ľ	••	1535	υ	U	Ü	ប	v .
Selenium	U	U	v	υ	ซ	υ	r	υ
Silver	ប	ü	ប	v	v	3.3	Ü	Ü
Socium	υ	บ	v	υ	i.	บ	ï	υ
Thallium	ŭ	v	U	υ	υ	บ	u	U
Vanadium	ט	U	17.0	υ	U	υ	Ţ	บ
Zinc	111.0	212.0	34.0	8.7	U	บ	U	7.3

Table 3-4 (cont.)

NUTO ION SITE INCOGNUIC MOLLYSIS SCHOOLY SHEET FOR SOILS NIL USENNLE DATA ABOVE KIL (MG/KG)

1073	49-50.51	0 - 2'	2 - 4'	4 - 6'	9 - 11'	. 9 - 11°	12 - 14'	19 - 21'
HETAL	S-W3E-12	S-¥4-1	S-W4-2	S-W4-3	S-W4-4A	S-W-4B	S-V 4-5	s -¥ 4-6
Aluminum	925	3624	2165	1533	2775	1352	4432	2074
Antisony	υ	R	R	R	R	R	R	R
Arsenic	υ	14.0	9.4	5.0	5.8	3.6	19.0	U
Barium	U	208 .0	118.0	49.0	υ	U.	640.0	U
Beryllium	υ	U	U	U	u	ŭ	U	υ
Cadmium	U	2.4	U	1.4	υ	u	U	v u
Calcium.	15800	2960 0	154 9	2111	4593	2538	133600	67000
Chronium	14.0	1601.0	105 0.0	111.0	990.0	2 27.0	22.0	69.0
Cobalt	υ	5.0	U	ŭ	u	υ	υ	. "
Copper	υ	413.0	467.0	€2.0	41.0	36.0	u ·	14.0
Tron	2120	22200	19900	9549	10200	7834	29800	8422
Lead	Ü	184.0	45.0	43.0	9.6	5.2	49.0	2.5
Charrige	บ	72.0	33.0	2.7	5.8	7.7	R	1.4
Magmesium	48 20	7293	r	U	. u	Ů	8299	15100
Manganese	49.0	190.0	30.0	€3.0	R	R	1838.0	192.0
Mercury	υ	0.30	C.20	0.20	ŭ	U	0.30	υ
Nichel	¥	298.0	108.0	184.0	63.0	22.0	4.9	52.0
Potassium.	r ·	υ	r	U	บ	ü	v	υ
Selenium	U	υ	U	. U	υ	u	υ	ľ
Silver	Ü	υ	Ü	ີ ບ	U	ŋ.	v	, u
Socium	U	Ų.	t	υ	ŭ	U	2597	U
Thallium	ŭ	u	U	υ .	υ	υ	υ	· u
Vanadium	บ	14.0	14.0	. υ	บ	ָ <mark>ט</mark>	บ	v
Zinc	5.6	174.0	113.0	247.0	. R	R	39.0	78.0

U= Below RDL

F= Unuseable data

Table 14 (cont.)

ALL USENSUE BATA ABOVE REL DIG/RG) ALTO HOW SITE

RLANG	0 - 2'	N	6 - 0	6.1	8 - 10	14 - 16	24 - 26'	0 - 2'
Teine	S-W5-1	S-45-2	S-15-4	S-15-4B	S-15-5	245	S-45-7	S-46-1
	2874	3518	â	5762	6525	3399	2517	4167
Antiacopy	ኞ	70	7 3	70°	טא	ď	c	d
Arsenic	16.0	23.0	7	Ħ	20.0	9.7	7.2	21.0
Barium	142.0	128.0	371.0	392.0	76.0	c	c	102.0
Beryllium	c	c	ď	ď	ď	c	ď	1.3
Cadmium	ď	c	2.7	ď	c	c	c	1.2
Calcium	4181	6591	10600	11400	111800	7600 0 ·	953 00	16300
Chronium	858.0	1045.0	2508.0	1782.0	33.0	200.0	107.0	479.0
Cobalt	c	ч	c	c	c	c	U	c
Copper	330.0	357.0	1258.0	1396.0	13.0	74.0	35.0	105.0
Iron	16400	19600	20900	25000	21600	12600	7590	10600
Leac	190.0	109.0	374.0	833.0	7. n	5.1	133 (F)	105.0
Cyanide	61.0	66.0	487.0	574.0	24.0	c:	c	74.0
Magnesium	c	1340	3112	25.74	5576	17500	19900	6667
Manganese	71.0	22.0	90.0	89.0	1039.0	180.0	27.0	· 215.0
Kercury	0.50	0.60	0.20	0.20	70	୍ ପ	c:	~ :
Nickel	81.0	67.0	2957.0	1521.0	35.0	155.0	62.0	54.0
Potassium	c	u	2241	356±	c	ಡ	ದ	es.
Selenium	c	d	c .	G	ניל	ಆ	c ;	5.0
Silver	c :	d	ď	c	c:	c	e;	درن درن
Sodium	20	7 0	1606	2634	c:	c:	רו	c:
Thallium	c	c	c	d	ci	ď	c:	c:
Vanadium	11.0	14.0	15.0	12 5	c	12.0	ं	15.0
Zinc	63.0	54.0	469.0		0) 0	100.0	66.0	- 60.0
							•	

The Below PDI He U

F= Unuseable data

Table 3-4 (cont.)

AUTO DON SITE DECEGNATE ANALYSIS SUPPRRY SEEET FOR SOILS ALL USEABLE DATA ABOVE ROL (MG/KG)

DEPTH	2 - 4'	4 - 6'	6 - 8'	9 - 11'	12 - 14'	12 - 14'	14 - 16'	19 - 21'
PETAL	S-V 6-2	S-¥6-3	S-W6-4	S -W 6-5	S-W6-6A	S-W6-68	\$ -11 6-7	S-W 6-8
Alwins	4929	7313	4638	10600	30 72	4173	298 5	1734
Antimony	U	υ	U ·	U	U	U	U	U
Arsenic	27.0	U	R	15.0	12.0	7.4	ט _	U
Barium	51.0	9 5.0	2 22.0	56 6.0	U	U	ับ	U
Beryllium	1.1	1.7	1.4	U	ŭ	U	υ	U
Cadmium	1.4	1.5	บ	U	· u	U	r	, v
Calcium	11490	17900	193€	57300	76400	80 500	4290 0	58100
Chronium	150.0	157.0	98 6.0	120.0	70.0	159.0	272.0	32.0
Cobelit	ن'	¥.	Ţ	15.0	ıſ	11	ц	ñ
Copper	50.0	69.0	633.0	19.0	U	11.0	27. 0	5.5
Iron	12000	31400	25000	4650 0	nar	13200	3:30	ઇ ગ્રહ્
Leai	€1.0	38.0	37.0	30.0	12.0	5.0	24.0	2.9
Cymnide	F.	R	R	R	R	R	Æ	R
Magmesium	3512	1751	บ	7309	€14€	€193	85 01	10600
Manganese	500.0	237.0	30.0	826.0	€50.0	.712.0	205.0	112.0
Keroury	C.20	0.20	U	U	υ	υ	υ	υ
Nickel	€2.0	41.0	484.0	31.0	16.0	18.0	35.0	15.0
Potassium	v	ប	1533	U	U	υ	υ	υ
Selenium	υ	U	บ	υ	1.3	1.3	U	u
Silver	1.5	υ	2.9	υ	บ	Ü	r	Ü
Sodiu:	υ	υ	υ	υ	υ	v	υ	v
Thellium	U	U	Ü	บ	ŭ	υ	U	U
Vanadium	14.0	32.0	29.0	31.0	ŭ	บ	14.0	v
Zipc	71.0	61.0	65.0	77.0	23.0	26.0	22.0	13.0

AUTO ION SITE PESTICIDE/PCB NOLLYSIS SUBBRY SHEET FOR SOIL ALL USEABLE DATA ABOVE ROL (UG/KG)

DEPTH CREPCUID	18.5-20' S-B2-6	29-3 0.5' S-¥3B-8	34- 35.5' S -1 /38-9	39-40.5' S-V32-10	44-4 9.5' 8-4/38- 11	49-5 0.5' \$-\38 -12
alpha-BHC	U .	υ	U	U	ש	บ
beta-BHC	U	9.39	15.00	15.0 0	7.80	28.0 0
delta-BHC	บ	υ	U	บ	บ	ប
gamma-BMC (Lindane)	U	บ	υ	บ	บ	บ
Reptachlor	8.5 0	บ	U	บ	บ	, v
Aldrin	U	บ	U	บ	U	บ
Heptachlor epoxide	U	บ	. U	U	ប	U
Endosulfan I	·U	U	U	บ	บ	U
Dieldrin	U	บ	U	บ	บ	U
4,4'-DDE	U	บ	v·	U	U	ប
Endrin	ប	U	· U	U	U	บ
Endosulfan II	U	υ	U	U	ប	U
4,4'-DDD	U	U	U.	U	U	U
Dniosulfan sulfate	U	U	U	U	U	U
4,4'-DDT	U	U	U	U	U	บ
Methoxychlor	U	U	U	U	U	U
Endrin ketone	U	U	U .	U	U	U
elpha-Chlordane	U	บ	U	U	บ	υ
Towaphene	U	ับ	υ	ָ ע י	บ	บ
Aroclor-1016	Ü	Ŭ	Ŭ	U	u	U
Aroclor-1221	U	ប	U	บ	บ	U
Arocler-1232	${\tt U}$	U	บ	. U	U	U
Aroclor-1242	U	Ŭ ·	U	U	บ	υ
Arotlor-1248	U	U	υ	ប	U	U
Aroclor-1254	U	U	U	U	U	ប
Arosler-1260	U	U	U	U ·	u	U

U= Below RDL R= Unuseable data

Of the fourteen borings on the Site ten (W-2, W-4, W-5, W-6, B-1, B-4, B-5, B-6, and B-7) were sampled for inorganics only and three (W-1, W-3b and B-2) were sampled for inorganics, volatile organics, samivolatiles and pasticides/PCB's. Boring W-3a was not sampled as it was in the immediate vicinity of W-3b.

Inorganic concentrations were compared to the values shown in Table 3-6 which list values of Typical Element Concentrations in Natural Soils adapted from: Hazardous Waste Land Treatment, USEPA., SW 874 (April, 1983). In the background boring W-1, magnesium was present in concentrations ranging from 6,135 to 12,100 mg/kg; these are above the typical range for magnesium as shown in Table 3-6. All other inorganics identified were within or below concentrations considered typical.

Boring W-2 also had magnesium (7,019-14,600 mg/kg) above the normal range. Cyanide (5.1 mg/kg) was detected in the upper two feet below the surface. Boring W-3b had antimony (22 mg/kg), cadmium (4.8 mg/kg), chromium (1,010-2,116 mg/kg), copper (1135 mg/kg), magnesium (7,500-25,500 mg/kg), mercury (0.4-5.1 mg/kg), nickel (651 mg/kg), silver (8.5 mg/kg) and zinc (506-720 mg/kg) all above typical concentrations. These compounds were contained in the upper eight feet except for magnesium, antimony and silver. All other inorganics identified were within or below typical concentrations.

Boring W-4 had cadmium (2.4 mg/kg), chromium (1,601-1,050 mg/kg) copper (413 mg/kg), and magnesium (7,293-15,100 mg/kg) present above typical concentrations. Cyanide (1.4-72 mg/kg) was detected with the highest concentration (72 mg/kg) detected within two feet of the surface.

Boring W-5 detected concentrations of cadmium (2.7 mg/kg), chromium (1,045-2,508 mg/kg), copper (339-1,396 mg/kg, lead (374-893 mg/kg), mercury (0.5-0.6 mg/kg), magnesium (17,500-19,900 mg/kg), nickel (1521-2957 mg/kg) and zinc (469 mg/kg) above typical values. In addition, cyanide (61-574 mg/kg) was detected above typical ranges in the upper eight feet of the boring.

AUTO ION
TYPICAL ELEMENT CONCENTRATIONS IN NATURAL SOILS
IN mg/kg

1	ALCO A	RANGE	AVERAGE	ELEMENT	RANGE	AVERAGE
,	lumirum	10,000-300,000	71,000	Lithium	5-200	20
7	Intimony	2-10	-	Magnesium	600-6,000	5,000
3	Arsenic	1-50	5	Manganese	20-3,000	600
E	Barium	100-3,000	430	Mercury	0.00-0.03	.03
E	Beryllium	0.1-40	6	Molybdenum	0.2-5	2
E	Boron	2-100	10	Nickel	5-50 0	40
E	Bromine	1-10	5	Radium	8x10 ⁻⁵	-
_ C	a dmium	0.01-0.7	.06	Rubidium	50- 500	10
C	Pesium	0.3-25	6	Selenium	0.1-2	.3
C	hlorine	20-9 00	100	Silver	0.01-5	.05
c	hromium	1-1,000	100	Strontium	50-1,000	200
ς c	obalt	1-40	8	Tin	2-200	10
7	pipies	2 -1 00	30	Turgsten	-	J
F	flourine	10-4,000	200	Uranium	0.9-9	1
C	Sallium	0.4-300	30	Vanadium	20-500	100
G	old	-	1	Yttrium	25-20 0	5.0
1	Codine	0.1-40	5	Zinc	10-300	50
I	anthanum	1-5,000	30	Zirconium	60-2,000	30 0
I	ead	2-200	10			

Adapted from: Hazardous Waste Land Treatment, U.S. EPA, SW 874 (April, 1983)

Boring W-6 had concentrations of cadmium (1.2-1.5 mg/kg), copper (105-633 mg/kg), magnesium (6,146-10,600 mg/kg) and silver (2.5-3.3 mg/kg). Cyanide (74 mg/kg) was identified in the upper two feet, while all of the cadmium, copper and silver were in the upper eight feet.

Boring B-1 had antimony (13 mg/kg), armenic (62 mg/kg), cadmium (1-1.6 mg/kg), chromium (2,433 mg/kg) copper (181-187 mg/kg), lead (928 mg/kg), and magnesium (7,365-26,200 mg/kg) above typical concentrations. Cyanide (0.7-4.9 mg/kg) was also identified. Most of the inorganics identified were recovered in the upper eight feet with the exception of magnesium, found throughout the sample, cadmium found at twenty (1.0 mg/kg) and twenty five feet (1.1 mg/kg) and cyanide (0.7 mg/kg) at 45 feet.

Boring B-2 had copper (119 mg/kg) and magnesium (7,809-26,300 mg/kg) above typical concentrations. Cyanide (0.32-4.4 mg/kg) was identified throughout the boring to a depth of 30 feet below the surface.

Boring B-3 had magnesium (6540-12,500 mg/kg) through out the boring. Cadmium (1 mg/kg) was detected in the upper 6 feet as well as at a depth of 100 feet below the surface. Mercury was found between 50 to 60 feet below the surface.

Boring B-4 had cadmium (1.4 mg/kg), chromium (2,561-2,968 mg/kg), copper (824-949 mg/kg), nickel (1,159-1,449 mg/kg), magnesium (9,711-27,000 mg/kg) and zinc (435-539 mg/kg) above typical concentrations. Cyanide (0.4-231 mg/kg) was identified with the highest concentration at 6-8 feet below the surface. The highest concentrations for chromium, copper, nickel and zinc were detected 6-8 feet below the surface.

Boring B-6 had cadmium (2.5-9.2 mg/kg), chromium (1207-1423 mg/kg), copper (143-1209 mg/kg), lead (365 mg/kg), magnesium (8636-9326 mg/kg), nickel (576-1022 mg/kg) and zinc (301-1474 mg/kg) above typical concentrations. Cyanide (0.9-17 mg/kg) was also identified throughout the boring.

Boring B-7 had cadmium (1.6-12 mg/kg), chromium (1,440-3,521 mg/kg), copper (617-10,100 mg/kg), magnesium (6,722-17,700 mg/kg), mercury (0.14-1.6 mg/kg), nickel (1,094-4,520 mg/kg), and zinc (589-2,029 mg/kg) above typical concentrations. Cyanide (4-15 mg/kg) was also identified 4-8 feet below surface.

Volatile samples were collected in three borings at the Site. results starting with W-1 identified 2-Butanone (58 ug/kg) at 19-21 feet below the surface. The results of samples from boring W-3B indicated the presence of methylene chloride (18-32 ug/kg), acetone (14110 ug/kg), trichloroethene (5596 ug/kg), tetrachloroethene (12 ug/kg), toluene (12-65 ug/kg) and ethylbenzene (6 ug/kg). Most of the volatiles identified were in the upper eight feet. results of samples from boring B-2 showed acetone (19-76 ug/kg), 2-butanone (33-57 ug/kg), trichloroethene (34 ug/kg), and toluene (5 ug/kg). These compounds were identified at two feet (2-butanone, toluene, eleven feet (acetone), twenty feet (acetone, trichloroethene), and at thirty feet (2-butanone). Butylbenzylphthalate (910-1600 ug/kg) was found from 24-40 feet, benzo (a) anthracene (240-1700 ug/kg) from 4-8 feet, bis (2-ethylhexyl) phthalate (590-8000 ug/kg) from 0-40 feet, chrysene (220-1400 ug/kg) from 0-8 feet, di-n-octyl phthalate (39-5,900 ug/kg) from 6-30 feet, benzo (b) fluoranthene (430-2,500 ug/kg) at 4 feet and the 6-8 foot interval, and benzo (a) pyrene (190-450 ug/kg) from 0-4 feet.

Two additional samples not required by the work plan were collected based on a visual assessment. Sample from B-1 at 8-10 feet identified methylene chloride (870 ug/kg), 2-butanine (9,500 ug/kg), ethylbenzene (4,200 ug/kg), styrene (6,400 ug/kg), toluene (8,000 ug/kg), tetrachloroethene (3,100 ug/kg) and total xylenes (31,000 ug/kg). The second sample from B-3 at 8-10 feet identified the presence of acetone (10 ug/kg).

The state of the s

Semivolatiles were analyzed for in samples from borings W-1, W-3b and B-2. Boring W-1 identified the presence of di-n-butylphthalate (840-1,700 ug/kg), from 0-21 feet, butylbenzylphthalate (1300 ug/kg) at 11 feet and bis(2-ethylhexyl)phthalate (510-1400 ug/kg) from 0-21 feet.

In boring W-3B the semivolatiles identified were phenanthrene (3,000 ug/kg) at 8 feet, di-n-butylphthalate (520-3800 ug/kg) at 0-40 feet, fluoranthene (370-3000 ug/kg) at 0-8 feet, and pyrene (330-3000 ug/kg) at 0-8 feet.

The semivolatiles identified in boring B-2 were phenanthrene (1,700 ug/kg) at 9-11 feet, anthracene (370-1,100 ug/kg) at 0-11 feet, Di-n-Butylphthalate (3,600 ug/kg) at 0-2 feet, fluoranthene (11,000 ug/kg) at 0-2 feet, pyrene (480-1,600 ug/kg) at 0-11 feet, benzo (a) anthracene (850 ug/kg) at 9-11 feet, bis(2-ethylhexyl)phthalate (940-1,400 ug/kg) at 9-11 and 23-25 feet, chrysene (670 ug/kg) at 9-11 feet, benzo (b) fluoranthene (890 ug/kg) at 9-11 feet, and benzo(a)pyrene (440 ug/kg) at 9-11 feet. Of the three borings analyzed for pesticides and PCB's, no PCB's were found and only two had pesticides present. Beta-BHC (9.39-28 ug/kg) was detected at a depth of 29-50 feet and was the only pesticide identified in W-3b. In boring B-2 the pesticide Heptachlor (8.5 ug/kg) was detected at 18-20 feet.

3.3 Monitoring Well Installation

- 3.3.1 <u>Purpose</u>. HART installed a total of seven groundwater monitoring wells at the Auto Ion Site (Figure 3-B). Six of these wells straddle the water table while the remaining well was set deeper into the aquifer and adjacent to a shallow well in order to assess the presence of a vertical hydraulic gradient. These wells were installed to provide necessary hydrologic and chemical data needed to determine groundwater flow direction, potential contamicant migration and to establish background levels of chemicals in groundwater.
- 3.3.2 <u>Methodology</u>. The installation of monitoring wells, supervised by HART was based on lithologic information obtained during borehole advancement. Each well was constructed of two inch diameter, stainless

steel (threaded flush joint) and 10.7 foot long, no. 10 slotted, stainless steel screen; these were installed immediately after drilling in the selected test borings.

Installation procedures were the same for all monitoring wells. The wells were emplaced at the desired depth through the hollow stem augers and held in place while the annulus was backfilled with silica sand to approximately two The augers were periodically retracted from the feet above the screen. borehole throughout construction. A bentonite seal consisting of approximately two feet of bentonite pullets was then placed above the sand. A 5% bentonite and cement mixture served to grout the borehole up to two feet below the ground Pure cement was placed above the bentonite/cement slurry to the surface. A protective steel casing was then set in the borehole and cemented in place. A cement collar was constructed around the steel casing to prevent any surface water from draining into the well. All wells were labelled and given locking caps. Monitoring well construction diagrams are contained in Following installation, four of the wells were developed by pumping; the remaining three were developed by introducing nitrogen gas into the well allowing water to bubble out via an educator pipe until water from the well was visibly free of sediment because of pump failure. The purpose of the well development was to create a good hydraulic connection between the well and the aquifer by removing formational fines. All development water was collected and stored for future disposal.

3.4 Sampling and Analysis of Monitoring Wells

- 3.4.1 <u>Purpose</u>. Monitoring well water samples were collected on November 3, 1987 and March 8,1988. Sampling was required in order to assess the condition of the groundwater in the aquifer underlying the Site as well as to establish background levels. A total of seven wells were sampled during each sampling event.
- 3.4.2 <u>Methodology</u>. Before sampling, each well was evacuated of at least five well volumes with a decontaminated stainless steel bottom loading bailer. Samples were then collected by pouring the water from the bailer directly into laboratory supplied bottles and vials. The bailer was decontaminated between

wells and a new rope was used for each sampling. All samples were kept at 4° C and transported to Century Laboratories, Inc. of Thorofare, NU and United States Testing Company, Inc. of Hoboken, NU.

3.4.3 <u>Findings</u>. Groundwater sampling parameters can be found in Table 3-7. A summary of laboratory data is displayed in Tables 3-8 and 3-9 with the actual laboratory generated data in Appendix V. A comparison of the analytical results for sampling rounds 1 and 2 are presented in Table 3-10. Required Detection Limits (RDL) for the analytical results are listed in Table 3-11. Required Detection Limits are optimum levels of analytical instrument response which may or may not be met in practice.

Analytical results for organic compounds at W-1, the background location, indicate positive results for tetrachloroethene in both sampling rounds. Concentrations of 7 ug/L and 6 ug/L were indicated in sampling rounds 1 and 2 respectively. Inorganics commonly found in groundwater and detected at this location during the first round of sampling included calcium, magnesium, manganese, potassium and sodium at 156,000.0, 41,800.0, 16.0, 5,720.0 and 163,000.0 ug/L respectively. The second round of sampling indicated the presence of aluminum at 38,600 ug/L, barium at 384 ug/L, calcium at 427,000, cadmium at 13 ug/L, chromium at 277ug/L, cobalt at 71 ug/L, iron at 220,000 ug/L, lead at 200 ug/L, magnesium at 117,000 ug/L, manganese at 5,370 ug/L, mercury at 0.30 ug/L, nickel at 225 ug/L, potassium at 8,310, sodium at 140,000, vanadium at 108 ug/L and zinc at 521 ug/L.

Analyses of W-2 confirmed the presence of volatile compounds trichloroethene at 5 ug/L and chloroform at 6 ug/L during the first round of sampling and chloroform again at 31 ug/L during the second round. The only semi-volatile detected was diethylphthalate, at 22 ug/L, on the second round of sampling at W-2. The first round of inorganic sampling at W-2 resulted in the detection of aluminum at 74,600 ug/L, arsenic at 31, barium at 4,340 ug/L, beryllium 111 ug/L, cadmium at 39 ug/L, calcium at 961,000 ug/L, chromium at 1,000 ug/L, cobalt at 312 ug/L, copper at 473 ug/L.

GROUNDWATER SAMPLING PARAMETERS. ROUND 1

Monitoring Wells *	Sample Number	Parameter
₩1	G₩-₩1	VOA, EN/A, Metals (unfiltered), Cyanide (unfiltered), Hexavalent Chromium, Pesticides, TDS, TSS
W2	GW-W2	91 PF
W 3a	GN-N3a	89
W 3F	GN-W3b	91 81
K 4	GW-W4	91 91
WE	GW-WS	ff Of the control of
₩6	GW-W 6	ti ti
WB	Gw-WB	11 11

TABLE 3-7 (CONTINUED)

GROUNDWATTER SAMPLING PARAMETERS, ROUND 2

Monitoring Well *	Sample Number	Parameter
MI.	Gv-41-5	VOA, BN/A, Metals, Cyanide Hexavalent Chronium
W2	G ₩-₩2-2	11
WЗа	G:-K32-2	91 11
₩Зa	Gw-W3a-2d	P1 11
W3b	GW-W35-2	11
W4	Gw-w4-2	11
VIS	GW-W5-2	11 11
W 6	G W-W6-2	91 11
V3	GW-WB-2	11 11

AUTO ION SITE ROUND 1 ORGANIC ANALYSIS SAMPARY SMEET FOR GROUNDARIER ALL USEABLE DATA ABOVE RILL (UG/L)

COPOLD .	G ! \ I	G:-12	Ch-K3Y	GH-1/3B	GV-V4	CH-ATD	Gi-V5
Chloromethane	บ	υ	u	υ	U	υ	υ
Bromomethane	U	U	บ	บ	U	u	ับ
Vinyl Chloride	U	U	5	U	3 5	40	24
Chloroethane	U	υ	U	U	บ	U	U
Methylene Chloride	υ	υ	11	ับ	56 0	550	6
Acetone	υ	R	R	R	· R	R	P.
Carbon Disulfide	U	U	U	. v	บ	U	U
1,1-Dichloroethene	υ	r	υ	U	บ	U	υ
1,1-Dichloroethane	v	บ	บ	บ่	บ	บ	U
Trans-1,2-Dickloroethane	υ	v	8€	v	170	180	U
Chloroform	υ	6	ט ָ	U	95	9 0	r
1,2-Dickloroethane	U	Ü	บ	U	45	45	ï
2-Butanone	υ	U	U	U	υ	υ	i
1,1,1-Trichloroethane	บ	r	ប	U	U	U	r
Carbon Tetrachloride	· U	U	บ	υ	U	ľ	ະ
Vinyl Acetate	U	ប	บ	ប	U	Ľ	ľ
Bromodichloromethane	U	v	υ	U	${f v}$	U	r
1,2-Dichloropropane	U	ľ	U	บ	$\cdot v$	· · · · · · · · · · ·	r
Trans-1,3-Dichloropropens	v	ľ	U	U	U	r	υ
Trichloroethese	' ט	Ē	92	ប	410	420	::
Dibromochioromethane	U ·	. "	U	ប	. U	u	υ
1,1,2-Tridloroethane	U	r ·	υ	ľ	U	r	ŗ
Benzene	v	ט	, U	v .	្រប	${f v}$	ΰ
cis-1,3-Dichloropropene	ບໍ	Ü	Ü	U	ั . บ	${\tt v}$	Ü
2-Chloroethylvinylether	ប	บ	บ	U	ប	U	Ü
Bromoform	υ	ü	U	U	${f v}$	U	ľ
4-Nethyl-2-Pentanone	υ	- U	${\mathfrak v}$	U	T U	· u	ï
2-Hexanone	U	Ü	U	U	v	r	ľ
Tetrachioroethene	7	Ü	υ.	${f v}$, u	ľ	Ü
1,1,2,2-Tetrachloroethans	U	:	U	ľ	r	r	Ü
Toluene	υ	Ţ	Ľ	t t	r	Ü	
Cilorobenzene	Ľ	· U	, v	t	. v	Ü	U
Diny Denzene	U	·	U	Ü	ï	Ü	Ü
Stytene	υ	ï	υ	υ	υ	ï	Ü
Total Xylenes	U	្ឋ	r	U	${f v}$	ľ	ΰ

U= Below FDL R= Unuseable data Dm Duplicate

The state of the s

AUTO ION SITE ROUND 1 ORGANIC ANALYSIS SUMMARY SHEET FOR GROUNDWATER ALL USEABLE DATA ABOVE RDL (UG/L)

COMPOUND	GI-V6	GV-VB
Chloromethane	υ	U
Bromomethane	U	U
Vinyl Chloride	บ	บ
Chloroethane	U	u
Methylene Chloride	บ	U
Acetone	R	R
Carbon Disulfide	U	U
1,1-Dichloroethene	U	บ
1.1-Dichloroethane	U	บ
Trans-1,2-Dichleroethane	U	บ
Chloroform	Ü	0
1.2-Dichloroethane	U	U
2-Butanone	บ	บ
1,1,1-Trichloroethane	บ	บ
Carbon Tetrachloride	t	U
Vinyl Acetate	บ	Ų
Bromodichloromethane	u	5
1.2-Dichloropropane	ľ	บ
Trans-1.3-Dichioropropene	บ	ប
Trichloroethene	ប	ij
Dibromochloromethane	บ	ប
1,1,2-Trichloroethane	Ŭ	ប
Benzene	บ	U
cis-1,3-Dichloropropene	ប	U
2-Chloroethylvinylether	บ	U
Bromoform	U	บ
4-Methyl-2-Pentanone	บ	U
2-Hevanone	บ	U
Tetrachloroethene	ប	U
1.1.2.2-Tetrachlorosthane	Ľ	Ü
Toluene	រ	Ü
Cilorobenzene	ប	ប
Ethylberzene	ü	: : : : : : : : : : : : : : : : : : :
Styrene	រូវ	
Total Xylenes	ប	U

U= Below RDL R= Unuseable data VB= Blank sample

Table 3-8 (cont.)

The state of the s

京の大学を変えているというという

AUTO ION STIE ACLE 2 ORGANIC ANALYSIS SLIPPARY SHEET FOR GROUDWATER: ALL USERBLE DATA ABOVE ROL (UG/L)

이 - 등 - 등	8-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	Q-12-2	Gi-131-2	GL-K3,LD2	G:-K36-2	CF-84-5
c	c	c	c	c	c	c
c	C	c	c	c:	с:	æ
c	c	c	c	. c	c	: c
c	ď	c	C	೮	; =	c
۲:	c	c	c	c	, 195	्राची
c	c	E	c	: c	: c	; c
d	c	r:	c	ರ	c	: c :
c	ㄷ	c	c	c	d	: c:
ಆ	c:	c	c	ď	: c	: :
c:	c	c	150	12	: c	3.6
c:	e	W 13	c	: c :	: c	: !á
c	c	C	c:	; c;	; c:	; -
ಆ	ಆ	c	ਫ	: c	t c	: c;
c:	ಡ	c:	c:	: स	; c:	: c
더	c	c	c	d	le	: त
c	c:	c	c	: ਫ	! ਰ	: 🖘
ಡ	ರ	ಆ	ď	i ei	: c:	: c
c	c:	c:	c	: c	; e:	: =
Ü	ಆ	d	c	; d	: c	;) c
c	C:	c ;	200	() 	: c:	10.
ಆ	ㄷ	ď	: c:	: c	: c	; c
e:	d	c	; c	; c:	; -	: -=
۲;	c	ď	d	: c	: c	: c
r:	G	c	d	; c:	: r:	; ∈
ct	c	ď	: C	: r	: c:	: c
۲;	ដ	c	c	l et	: c:	: -
c:	c:	c:	, c:	l ed	; r:	: c
r:	c:	c	et	t C	: c	: ←
r:	rts	c	c:	t d	ित्र	: r
r:	r:	с	r:	; ct	; c:	; (
۲:	G	c	e e z	: c:	; r	: r
·:	r:	r:	r:	: c:	; e	; r
r:	r:	c:	· c:	: e:	; e	: •
r:	ಚ	ಆ	: c:	: ਵ	: «·	: c
r:	c :	ď	r:	c .:	e.	,
	ព្យាការការការការការការការការការការការការការ		Ş. Ş	dennantadadadadadadadadadadadadadadadadada		

The spine and

F= Unusezile data

175 Plan't sample

AUTO ION SITE ROUND 2 ORGANIC ANALYSIS SUMMARY SHEET FOR GROUNDWATER ALL USEABLE DATA ABOVE ROL (UG/L)

COPCID	GH-V5-2	GV-V 6-2
Chloromethane	U	บ
Bronomethane	U	U
Vinyl Chloride	U	U
Chloroethane	ט ַ	ប
Methylene Chloride	R	U
Acetone	U	U
Carbon Disulfide	U	U
1,1-Dichloroethene	บ	U
1,1-Dichloroethane	บ	U
Trans-1,2-Dichloroethane	บ	U
Chloroform	U	U
1,2-Dichloroethane	ប	U
2-Butanone	U	U
1,1,1-Trichloroethane	U	Ŭ
Carbon Tetrachloride	U	U
Vinyl Acetate	บ	U
Bromodichloromethane	ប	U
1,2-Dichloropropane	U	u
Trans-1,3-Dichloropropene	บ	U
Trichloroethene	U	U
Dibromochloromethane	υ	U
1,1,2-Trichloroethane	U	u
Benzene	U	ប
cis-1,3-Dichloropropene	U	U
2-Chloroethylvinylether	u	U
Bromoform	U	U
4-Methyl-2-Pentanone	U	ប
2-Hexanone	U	U
Tetrachioroethene	U	ប
1,1,2,2-Tetrachloroethane	U	U
Toluene	U.	U
Chlorobenzene	U	U
Ethylbenzene	บ	U
Styrene	U	U
Total Xylenes	U	U

MAN NOW STITE SHOWS THE CHEAL SECTION SECTION SECTIONS THE CHEAL SHEET HOR SECTION IN CHEAL STATE SHOWS THE CHEAL SHOW

							•
:	•	:	.:		.:	.3	34LLTCGULLINE
:	•	:	3	ä	ā	ä	Passo(C'p'1) LesArene
••	•	:	. .				
.3	:	••	.1	ą	:	3	simosunink (d, s) ozmalid
.:	a	.2	3	.2	.:	.3	Subtrict (2, 2, 2) ombott
.1	a	a	3	a	.:	.1	benzo (a) pyrene
.3	a	a	3.	a	.1	a	Seaso (k) fluoranthene
n	a	ā	ā	n	ā	a	Benzo (b) £1uoranthene
1	a	a	Ω	a	a	α	D. r. corrylphthalaite
32	3 T	33	77	36	39	75	arailatifq(f)genlytif3-\$) and
a	α	n.	a	a	Ω	a	Christne Christne
ä	ä	ä	ä				
				ū	.1	a a	Securities (s) oxned
.1	a	a	.1	a	a	a	estric conscionatio (€-18,6
.1	.3	a	a	a.	a	a	buryloensylphthalate
3	.2	n	J	a	a	a	Preme
 	ä		ä	ā	ä		and in the second
		a				3	
a	76	301	130	ુ• :	?C₹	720	braisdrictividen-a-at
\mathbf{a}	a	a	a	a	a	a	Anthracene
a	.1	a	a	a	a	Ω	Phenanthrene
			;				
	a	a	a.	a	.3.	1	locacionolitassas!
:	3	a	3	a	.3	ถ	ಕೀತಿಸುವಿಯುನಿಗುಕುಕಿ
.1	Ω	a	.1	ล	a	a	<pre>e_grouphen;!byen;!gerper</pre>
.1	3	Ω	n	a	n	a	N-CL ETOSOCL PHONEY LELLING
	3.	a	a	a	:	3	$i_{ab}dq_{ab}drs_{ab}-i_{ab}drs_{ab}$
.1	Ω	n	Ω	Ω	Ω	n	ontitue out the
a	Ω	α	a	Ω	a	a	Fluorene
ä	ä	ä					4-Chlorophenyl-phenyl ether
			a	a	ā	a	
a.	a	ล	n	a	a	a	ersisaringiyared
	a	a	a	U	a	a	ಕಿದ≊ಬ್ಬೆರಾರಾವ ಬಾದ್ದ್ ≯, ೭
.1	a	n	a	Ω	n	Ω	nem:comedia
a	Ω	u	α	a	n	U	(-dc trophenol
a	n	U	a	Ω	Ω	a	Considerational-1.S
3	Ω	Ω	Ω	Ω	α	а	Acetaphthene
Ω	α	a	Ω	n	a	Ω	3-Nitromiline
							-
1	a	Ω	u	n	Ω	Ω	2, é-Diri irotoluene
Ω	a	Ω	а	Π	Ω	Ω	Acceptabilities:
Ω	Ω	U	α	α	a	a	Dimethylphthalate
	a	n.		ñ			
n			a		a	n	2-ht tromatane
ລ	n	Ω	u	u	a	n	∍co-ladtdqaccooldD-S
a	Ω	n	^	Ω	3	α	2.4,5-Tradiorophenol
1	a	n.	a	22	a	a	2,4,6-173 dilarophesol
							The state of the second
ລ	n	n	n	Ω	u	Ω	Herachiorocycloperadiene
Ω	a	a	α	Ω	a	Ω	अत्र विश्वप्रदेशकार्यकार्यः अस्-दे
a	a	α	α	a	ũ	a	Locate in the control of
a	a	α	n	Ω	n	n	Recently organizatione
n	a	Ω	u	Ω	າ	Ω	entituscold-
α	ũ	u	a	a	a	a	अस्त्र (इस्ट) हरा
Ω	n	n.	Û	Ω	n	n	1,2,4-Trachloroberrens
ū	ā	ñ	ñ	ũ	ñ	a	2.4-backlorophenol
							S de la company (to d'all a company)
a	a	Ω	n	ត	a	Ω	bis (2−Chloroethony) methane
Ω	$\boldsymbol{\sigma}$	a	u	α	U	Ω	Sensoic and
n	Ω	n	ũ	n	. a	a	2,4-Dasethylphenol
U	Ū	U	ū	ū	Ū	Ū	2-ft trophenol
U	a.	u	U	n.	Ω	Ω	saprodque <u>I</u>
α	ū	Ω	α	α	Ω	n,	Pic tropensene
ກ	Ω	Ω	n	n	Ω	Ω	Besechieroethane
	-						
Ū	a	Ω	Ω	n	U	Ω	Stress (Now the theorem) Afrik
u	ū	u	n	Ω	Ω	α	(credityitet-)
ũ	U	Ω	α	Ω	n	Ω	has (2-Ghloroisopropy) ether
n.	ñ	ñ	n.	n	ñ	ä	S-Hethylphenol
							Frankline promoter to a
ū	82	Œ	ū	a	ū	a	3,2-12 chlorobensene
Ω	Ω	a	U	α	n i	Ω	Senty: ejcopoj
ч.	14		a	Ω	Ω	n	2,4-10 chlorobenzene
ñ	ů.	Ω	17				
n	n	Ω G		Ω	Ω	Λ	7*1-13 CENCEDING (1)
n n	u u	a	a	Ω	Ω	a	1, 1-Dichlerbersene
n n n	n n o	a a	a n	a	Ω	Ω	S-Chlorophenol
n n n	u u	a	a n n	n n	n n		
n n n	n n o	a a	a n	a	Ω	Ω	S-Chlorophenol
n n n	n a a	a a	a n n	n n	n n	n n	bis (2-Chloroethy)) ether S-Chlorophenol
n n n	n a a	a a	a n n	n n	n n	n n	bis (2-Chloroethy)) ether 2-Chlorophenol

Table 3-8 (cont.)

AUTO DON STIE SECT-VOLATILE MOLYSII SUPERIY SEET FOR GROUPERITER ALL USDANLE DATA ABOVE WILL (US/L.)

Round 1

നുവ ത	av-1 6	Q:-18
Phenol	υ	r
his (2-Chloroethyl)ether	Ü	Ü
2-Gillorophenol	U	บ
1,3-Dactiforobectene	v	U
1.4-Dichloroberzene	U	บ
Henryl alcohol	U	U
1.2-Dichlorobenzene	v	t
?-Hethy:lphono:	U	บ บ
has (2-Chlorousopropyl) ether	บ ย	ย
4-Hethylphenol N-Hotroso-di-n-dipropylazine	บ	บ
Herospitatos pare	บ	บ
Ni trobenzene	ť	บ
Isophorone	บ	บ
2-ft trophenol	U	r
1.4-Inmetmiphenol	υ	v
Benzoic amó	U	υ
bis (2-Quoroethory) sethane	บ	f.
2,4-Inchlorophenol	U	r
1.1.4-Triciloropenzene	U	U
kinhihi ene	U	ย บ
4-dilonomatum	r r	r r
hexachlorobutadiene 4-Chloro-l-methylphenol	ť	บ
Stiethy inaphthalene	ď	ť
Hexacilorocyclopentaciene	v	Ü
2,4.6-7m milorophessi	ŭ	ຶ່ນ
2.4.5-7mchiorophenol	ť	· v
?-Ciloronaphthalene	U	u
2-Mitrogrillane	u	u
Dimethylphthalate	U	r
Apenaphthylene	U	t
2,f-Dinitrotoluene	U	r
3-Mitrosniline	ľ	r
Acenaphthene	v	r T
2.4-Danitrophenol 4-Hitrophenol	u	U
Dibensofurer	ซ	v
1.4-Dinitrotoluene	ř	ť
Inethylphinalate	Ü	Ü
6-0-1 arophenyl-phenyl ether	r	r
Flumme	τ	U
4-Narrosmilane	r	r
4,6-Transtro-1-settylphenol	ľ	ľ
1-mitrosomphenylamine	v	r
4-bromophenyl-pnenyletter	r T	r r
Hexachicrosenzene		Ü
Pentachicrophenol Phenanthrene	r r	ï
Anthranene	ľ	ï
In-m-burvirinhalate	ΰ	:30
Fruoranthene	ŭ	ะ
Prese	ť	r
Butylbenzylphthalate	v	υ
3.3 -Dichoropenzidine	τ	r
Senno (a) anthracene	r	ľ
Christon	t	ľ
has (2-Ethylhenyl) phthalate	7.	:::
Di-m-octylphthelate	r 	Ü
Benzo (b) fluoranthene	r .	r "
benzo (k) fluoranthene	r t	į.
Berno (a) pyrene Indeno (1, 2, 3-cd) Pyrene	Ü	17
Pibenzo (E.h) Antoracene	ľ	:
bendo (g.h.illenylene	ΰ	r r r r
i-fitrosmilme	ř	ī

Table 3-8 (cont.)

AUTO ION SITE SEZ-VOLATUE ANALYSIS SUMMARY SHEET FOR BROUNDWATER ALL USEABLE DATA ABOVE RDL (US/L)

ה מונים במונים במנים במנים בינים בינים במכים במכים בינים ב

			Ro	ound 2 ·		
COMPOUND	en-n1	GH-H2	GH-H34	SH-H3A D	8m-838	BH-H4
Phenol	U	U	U	U	U	U
bis(2-Chloroethyl)ether	Ū	Ü	U	U	U	U
2-Chlerophenel	U	U	บ	U	Ľ	U
1,3-Dichlorobenzene	บ	U	U	U	Ü	Ü
1,4-Dichlarobenzene	U	U	Ü	U	U	U
Benzyl alcohol	Ü	U U	U U	U	u u	26
1,2-Dichlorobenzene	U	u u	Ü	ŭ		ט
2-Methylphenol bis(2-Chloro:sopropyl)ether	Ü	ű	ŭ	ŭ	ŭ	ŭ
4-methylphenol	ŭ	บ	Ū	Ü	U	U
N-Nitroso-di-n-dipropylamine	Ū	Ü	U	U	U	υ
Hexachloroethane	U	U	U	U ´	U	U
Nitrobenzene	U	υ	υ	U	U	U .
Isophorone	U	U	Ü	U	Ü	Ü
2-Nitrophenol	Ü,	ບ	U	U .	บ	Ü
2,4-Dimethylphenol	U	U	U ·	U	Ü	ŭ
Benzoic acid bis(2-Chloroethoxy)methane	ม	Ü	Ü	Ŭ.	ī	ũ
Z.4-Dichlorophenol	ŭ	· Ü	Ü	Ü	Ũ	Ū
1.2.4-Trichloropenzene	ŭ	Ü	ū	Ū	U	U
Namhthalene	٠ŭ	. Ū	Ū	Ù	U	U
4-Enlorganitine	Ū	U	U	U	υ	U
Mexachlorobutadiene	U	U	. U	U	Ľ	U.
4-Chloro-3-methylphenol	L	U	· U	U	U	U
E-Methylnaphthalene	υ	U	U	U '	Ů,	· U
Hexachlorocyclopentaciene	U´	. U	U	U	U	U U
2.4.6-Trichlorophenol	U	Ü	Ü		บ ย	Ü
E,4,5-Trichlorophenol	U	U	ט	Ü	Ü	Ü
E-Chloronaphthalene	Ü	ט ט	٠ ن	Ü	Ð	Ü
E-Mitroaniline Dimethylphthalate	n	ט	. ນ	Ü	บ	Ū
Azenaphthylene	Ü	ນ	Ü	บ	Ū	U
2.6-Dinitrotoluene	ŭ	บั	Ü	Ü	ָ ע	U
2-Nitroaniline	Ū	ט י	U·	ີ ບ	. U	บ
Asenaphthene	ָט :	ບ	υ ·	U	U	U
2.4-Dinitrophenol	Ü	Ü	· U	U	Ü	U
4-Nitrophenol	ິບ	Ü	U	Ü	U	U
Dibenzofuran	U	Ų	U	ບ ບ	. u	Ü
2,4-Dinitrotoluene	บ	. ∩ 23	Ŋ	Ü	ŭ	ŭ
Diethylphthalate 4-Shlorophenyl-phenyl ether	υ U	בב ט	, D	Ü	Ū	Ü
Fluorene	ŭ	ŭ	ñ	. Ü	Ū	U
4-Nitroaniline	· ŭ	ũ	. บ	U .	Ľ	U
4,e-Dimitro-E-methylphenol	U	U.	IJ	U	ני	Ü
N-nitrosodiphenylamine	u u	n	n	U	<u>u</u>	Ü
4-Bromophenyl-phenylether	U .	U	. U	υ	U .	, U
hexach)orobenzene	Ľ		n 	ט ע	ני ני	Ü
Pentachlorophenol Phenanthrene	ני		บ	ט	, .	บ
Anthracene .	. ບ			Ü	Ü	Ŭ
Di-n-butylonthalate	ט	· ນ	บั	. U	ŭ	บ
Fluoranthene	ŭ	Ü	υ .	` Ū	Ū	IJ
Fyrene	ū	Ū	บั	U	U	υ,
Butylbenzylphthalate	ט	Ü		U	. u	, u
3,3'-Dichorobenzicine	U	• บ -	υ,	υ	Ü	ט
Senzo (a) anthracene	ti	U	U	U	U .	
Chrysene	- ກຸ	υ ₋	U	U	u	U
bis(2-Ethylhexyl)phthalate	U	U	U 	ບ	Ü	ນ . ປ
Di-m-octylphthalate	U·	U	n.	บ บ	υ U	บ
Senzo(b)flupranthene Senzo(k)fluoranthene	υ	u.	ນ	U	Ü	Ü
Benzo(A)pyrene	U	U _	IJ	. U	Ü	Ü
Insens(1,2,3-cd)Pyrene	U	u U	ט	U	Ü	Ü
Dibenzo(a,h)Anthracene	U	Ü,	Ü	U	. Ü	บ
Benzo(c,h,i)=ervlene	บั	Ü	. 0	Ü	บ	Ū
2-Nitroeniline	บั	ŭ	Ü	ū	บ	Ŋ

AUTO ION SITE

MINITE ANALYSIS SUMMARY SHEET FOR GROUNDWATER
ALL USEABLE DATA ABOVE RDL (UG/L)

Round 2

COMPOUND	Gw-w6
Pheno 1	υ
bis(2-Chloroethyl)ether	Ũ
2-Chlorophenol	U
1.3-Dichlorobenzene	U
1,4-Dichlorobenzene	U
Benzyl alcohol	U
1,2-Dichlorobenzene	U
2-Methylphenol	U
bis(2-Chloroisopropyl)ether	U
4-Methylphenol N-Nitrosc-di-n-dipropylamine	Ü
Hexachloroethane	Ū
Nitrobenzene	Ü
Isophorone	u
2-Nitropheno!	U
2,4-Dimethylphenol	U T
Benzoic acid	U
bis(2-Chloroethoxy)methane	υ
2,4-Dichlorophenol	U
1,2.4-Trichlorobenzene	Ü
Naphthalene 4-Chloroanitine	U
Hexachlorobutadiene	Ü
4-Chloro-3-methylphenol	U
2-Methylmaphthalene	ū
Hexachlorocyclopentadiene	U
2,4,6-Trichlorophenol	U
2,4,5-Trichlorophenol	U
2-Chloronaphthalene	υ
2-Nitroaniline	U
Dimethylphthalate	U
Acenaphthylene 2.6-Dinitrotoluene	U
3-Nitroaniline	Ü
Acenaphthene	Ü
2.4-Dinitrophenol	Ū
4-Nitrophenol	U
Dibenzofuran	υ
2,4-Dinitrotoluene	U
Diethylphthalate	Ü
4-Chlorophenyl-phenyl ether	U
Fluorene 4-Nitroaniline	U
4,6-Dinitro-2-methylphenol	U
N-nitrosodiphenylamine	Ü
4-Bromophen, 1-phen, lether	Ü
Hexachlorobenzene	U
Pentachlorophenol	نا
Phenanthrene	U
Arthracene	U
Di-n-butylphthalate	u
Fluoranthene	บ
Pyrene Butylbenzylphthalate	u
3,3'-Dichorobenzidine	Ü
Benzo(a)anthracene	Ü
Chrysene	ū
bis(2-Ethylhexyl)phthalate	u
Di-n-octylphthalate	Ü
Benzo(b)fluoranthene	U
Benzo(k)fluoranthene	U
Benzo(a)pyrene	U
Indeno(1,2,3~cd)Pyrene Dibenzo(a,h)Anthracene	ن U
Benzo(g,h,i)Perylene	U
3-Nitroeniline	ย
	_

Table 3-9

AUTO ION SITE
ROUND 1 DIORGANIC ANALYSIS SUMBGRY SHEET FOR GROUNDWATER
ALL USEABLE DATA ABOVE ROL (UG/L)

,					'n	Unusezble dati	당 II	t⊨ Below RDL
· e:	c	c:	e,	c	c:	0.00	E E	Hexa-Chronium
762.0	24.0	ול	ויל	32.0	6) 6)	255. D	c	Zinc
63.0	c:	c	d	c	c:	сı	c	Vanacium
æ	c ;	c:	c	c	c:	c	c	Thallium
196000	132000	551000	54,3000	80300	66800	133000	163000	Sodium
0.0	0.0	0.0	0.0	0.0	0.0	11.0	3.0	Silver
נוכ	ਹਿ	טל	प्रं ग	>1	ניל	ניל	נית	Seleziu.
13400	\$1200	118000	114000	r:	20100	11100	5720	Potassium
1350	20.0	5650.0	4810.0	211.0	270.0	3 630.0	c	l'aciel
c . 90	c	೮	С	ч	ני	1.50	c :	Keromy
11200.	1390.0	, 10	;त¹	255.0	1270.0	1380.0	16.0	Manganese
209000	37800	29600	64400	47200	24300	245000	20817	Magnesium
:.o	40.0	2850.C	2700.0	13.0	125.0	62.0	c;	Cyacide
388.0	ď	טיג	; o	С	сı	568.0	c;	Leac:
114000	c	ניי;	70	c	348	45200	æ	tro
£	c	נהל	ויל	c:	ੁ ਫ	473.0	сı	Copper
7€.0	c	c	c	U	บ	312.0	c:	Cobalt
1310.0	c	;xt	27.0	c	c	1000.0	۲:	Chronium
960000	228000	352000	230000	149000	304000	961000	156000	Calcium
23.0	c	6.7	7.8	U	r:	39.0	٦	Cadmium
6.5	c	С	ප	ď	c	111.0	c	Beryllium
720.0	C	c	ਖ	U	U	4340.0	ď	Barium
47.0	· c	33.0	12.0	c	u	31.0	c	Arsenic
727	70	>0	70	70	70	☞	ter	Antimony.
33100	c	13800	ď	c	æ	74600	೮	Al writing.
G-16	Q -55	9. F. C.	GI-V4	GH-W3B	SEN- SE	Q-53	5-13 5-13	TYTES

			•	•		sisė aldeasi	ucU =A	Um Below HIL
a	<u>.</u> a	n	Ω	α	a	130.00	ı a	Hers-Chroxitz
0.788	J:060T	0.0165	a	1380.0	0.0111	0.023	0.128	टपाइट
0.021	0773 .	0:51	0.0	0.0	3.0	0.371	0.301	muitisasV.
α	n	a	Ω	n	a	n	a	willsar.
T23000	120000	298000	00171	002 <i>LL</i>	00899	100000	140000	muibos
0.0	010	0.0	0.0	0.0	9.0	0.0	0.0	STIAGE
A	¥	Æ	F	F	F	Æ	F	Selenium
52700	56396	30976	a	C093Z	26002	75000	0153	Foressium
0.109	0.0242	0.00911	Ω	010771	0.0231	0.00621	0.322	<u> Tario i M</u>
05.0	0F.£	n	Ω	1730	cort	Ω	05.0	Neroury.
010219	0.0861	0.0691	234.0	0.0971	0.0221	0.00238	0.0723	Kanganese
CCOGET	20939	CCCSET	46300	36236	32900	CC08EI	COOLIT	ಸ್ವಾಚಾಕ್ಷ್ಮ
n	0.02	0.02	Ω	0.061	110.0	a	Ω	Cyanide
0°07Z	0.19	0.78	0.3	0.72	0.54	230.0	0.002	beat
Se0000	00619	0C89T	S05 0	00007	36300	CC0872	220002	noul
F	010911	.	n	0.309	0.524	Ä	¥	.:ತಡೆರೆಂ
0.83	n	n	n .	n	n	175.0	0174	1[3d0)
0.738	0.0781	0.202	16.0	0.506	0.327	0.962	0.772	Curcatum
00088 7	361000	00067	723000	332000	328000	≎CC38₽	000/27	Celcium
0.31	ortt	16.0	n	5.3	α	0.62	13.0	ಮಲಾವಿ
u	n	n	n ·	· n	α	n	a	Berg'llium
0.347	ũ	u	n	n	u	4520.0	384.0	त्यारं प्रहर्ष
0.72	17 0°0	0.12	я	0.12	0°6T .	0.11	¥	Arsenic
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Vnoni rak
0099€	11000	0897	n	7130	£320	COLIL	0093€	anaian[A
Cn-40 -5	2- 3 11-12	Cn-n4 -5	Ch-K3B -5	Ch-1.3YD-5	CM-M3Y -5	Cn-K5 -5	CH-NJ -S	HELLYT

VIT RESUME DELY VBONE MOT (RC/T)
WORND S INCHEMIC WATARIR REGIONAL RIESEL LOS GROTHONYLISE
WILLO ICH: SILE

(table 3-9 (cont.)

TABLE 3-10 continued

Comparison of Organic Analyses from groundwater sampling.

MONITORING WELL W-4 (ug/L)

COMPOUND	First Round 11/03/87	Second Round 03/08/88
Vinyl Chloride	40	
Methylene Chloride	560	
Trans-1,2-Dichloroethane	180	16
Chloroform	95	19
1,2-Dichloroethane	45	
Trichloroethene	420	160

MONITORING WELL W-5 (ug/L)

COMPOUND	First Round 11/03/87	Second Round 03/08/88
Vinyl Chloride	24	
Methylene Chloride	6	R
Trichloroethene	15	

MONITORING WELL W-6 (ug/L)

	First Round	Second Round
COMPOUND	11/03/87	33/80/80

NONE DETECTED

- --- Denotes results are below Required Detection Level
- R Denotes unuseable result

3-58

TABLE 3-10 continued

Comparison of Organic Analyses from groundwater sampling.

MONITORING WELL W-1 (ug/L)

COMPOUND	First Round 11/03/87	Second Round 03/08/88
Tetrachloroethene	7	6

MONITORING WELL W-2 (ug/L)

COMPOUND	First Round 11/03/87	Second Round 03/08/88
Chloroform	6	31
Trichloroethene	5	

MONITORING WELL W-3A (ug/L)

COMPOUND	First Round 11/03/87	Second Round 03/08/88
Vinyl Chloride	5	
Methylene Chloride	11	
Trans-1,2-Dichloroethane	86	150
Trichloroethane	92	100

MONITORING WELL W-3B (ug/L)

First Round Second Round COMPOUND 11/03/87 03/08/88

NONE DETECTED

TABLE 3-10 continued

Comparison of Inorganic Analyses from groundwater sampling.

MONITORING WELL W-6 (ug/L)

CATION	First Round 11/03/67	Second Round 03/08/88
Aluminum	33100	36600
Antimony	R	
Arsenic	47	27
Barium	720	746
Beryllium	6.5	
Cadmium	23	16
Calcium	960000	488000
Chromium	1310	8€7
Cobalt	76	53
Copper	644	R
Iron	114000	260000
Lead	388	240
Cyanide	11	
Magnesium	209000	130000
Mançanese	11200	5120
Mercury	0.90	C.3C
Nickel	1350	601
Potassium	13400	13100
Selenium	P	**************************************
Silver		
Sodium	196000	153000
Thallium		
Vanadium	€5	120
Zinc	7 82	537
Hexavalent Chromium		

⁻⁻⁻ Denotes results are below Required Detection Level

A Denotes Data is unusable

TABLE 3-10 continued

Comparison of Inorganic Analyses from groundwater sampling.

MONITORING WELL W-5 (ug/L)

CATION	First Round 11/03/E7	Second Round 03/08/88
Aluminum		11000
Antimony	R	
Arsenic		44
Barium		
Beryllium		
Cadmium		11
Calcium	228000	361000
Chromium		1370
Cobalt		
Copper		1150
Iron		51900
Lead		61
Cyanide	40	40
Magnesium	37800	58500
Manganese	1390	1980
Mercury	~~~	2.70
Rickel	2210	2450
Potassium	41200	28300
Selenium	R	£
Silver		
Sodium	132000	120000
Thallium		
Vanadium		21
Zinc	214	1090
Hexavalent Chromium		

⁻⁻⁻ Denotes results are below Required Detection Level

R Denotes Data is unusable

TABLE 3-10 continued

Comparison of Inorganic Analyses from groundwater sampling.

MONITORING WELL W-4 (ug/L)

CATION	First Round 11/03/87	Second Round 03/08/68
Aluminum	13800	4680
Antimony	R	
Arsenic	23	24
Barium		
Beryllium		
Cadmium	6.7	16
Calcium	352000	473000
Chromium	R	222
Cobalt	***	
Copper	R	R
Iron	R	16800
Lead	R	57
Cyanide	2850	50
Magnesium	£ 9600	138000
Manganese	R	1690
Mercury		
Nickel	5650	11600
Potassium	118000	92600
Selenium	¥	R
Silver		
Sodium	551000	298000
Thallium		
Vanadium		24
Zinc	F.	4910
Hexavalent Chromium		

⁻⁻⁻ Denotes results are below Required Detection Level

R Denotes Data is unusable

TABLE 3-10 continued

Comparison of Inorganic Analyses from groundwater sampling.

MONITORING WELL W-3A (ug/L)

CATION	First Round 11/03/67	Second Round 03/08/88
Aluminum		7130
Antimony	R	
Arsenic	en en en	21
Barium		
Beryllium		
Cadmium		5.3
Calcium	304000	335100
Chromium		902
Cobalt	4 00 400 400	
Copper		606
Iron	348	40000
Lezi		57
Cyanide	129	130
Magnesium	24300	28200
Manganese	1270	1760
Mercury	en en en	1.30
Rickel	270	1770
Potassium	20100	28600
Selenium	R	R
Silver	***	
Sodium	66800	77200
Thallium	ap an ap	
Vanadium		***
Zinc	27	1150
Hexavalent Chromium		

⁻⁻⁻ Denotes results are below Required Detection Level

R Denotes Data is unusable

TABLE 3-10 continued

Comparison of Inorganic Analyses from groundwater sampling. MONITORING WELL W-3B (ug/L)

CATION	First Round 11/03/87	Second Round 03/08/88
Aluminum		
Antimony	R	
Arsenic	•••	R
Barium		
Beryllium		
Cadmium		
Calcium	149000	150000
Chromium		19
Cobalt		an en en
Copper		
Iron		2050
Lead		8
Cyanide	13	70
Magnesium	47200	46300
Manganese	255	234
Mercury		
Nickel	211	32
Potassium		3460
Selenium	R	R
Silver		
Sodium	80300	74700
Thallium	en- en- su-	
Vanadium		
Zinc	32	
Hexavalent Chromium		

⁻⁻⁻ Denotes results are below Required Detection Level

R Denotes Data is unusable

TABLE 3-10 continued

Comparison of Inorganic Analyses from groundwater sampling.

MONITORING WELL W-2 (ug/L)

CATION	First Round 11/03/67	Second Round 03/08/88
Aluminum	74600	71700
Antimony	R	
Arsenic	31	11
Barium	43 40	4520
Beryllium	111	
Cadmium	39	23
Calcium	961000	488000
Chromium	1000	599
Cobalt	312	125
Copper	473	R
Iron	46200	278000
Lezd	568	230
Cyanide	62	
Magnesium	245000	138000
Manganese	1360	38200
Mercury	1.50	
Nickel	3630	12300
Potassium	11100	12000
Selenium	Я	ī
Silver	11	
Sodium	133000	106000
Thallium		
Vanadium		178
Zinc	2 55	€40
Hexavalent Chromium		130

⁻⁻⁻ Denotes results are below Required Detection Level

R Denotes Data is unusable

TABLE 3-10

Comparison of Inorganic Analyses from groundwater sampling. MONITORING WELL W-1 (ug/L)

CATION	First Round 11/03/67	Second Round 03/05/88
Aluminum	***	38600
Antimony	R	
Arsenic		R
Barium	40- m- qu	384
Beryllium		
Cadmium	* * *	13
Calcium	156000	427000
Chronium		277
Cobalt		71
Copper		R
Iron		220000
Lead		200
Cyanide		
Magnesium	41800	117000
Mançanese	16	5370
Mercury		0.30
Rickel		225
Potassium	572C ·	83.2 C
Selenium	R	R
Silver		
Sodium	163000	140000
Thallium		
Vanadium		108
Zinc		521
Hexavalent Chromium		

⁻⁻⁻ Denotes results are below Required Detection Level

R Denotes Data is unusable

Table 3-11

	VOLATILES	Detection Limits(1)		tion Limits(1)
		CAS Number	Low Water ⁽²⁾	Low Soil/Sediment ⁽³⁾ ug/kg
				
1.	Chloromethane	74-87-3	10	10
2.	Bromomethane	74-83-9	10	10
3.	Vinyl Chloride	75-01-4	10	15
4.	Chloroethane	75-00-3	10	10
5.	Methylene Chloride	75- 09-2	5	5
6.	Acetone	67-64-1	10	10
7.	Carbon Disulfide	75-15-0	, 5	5
8.	1,1-Dichloroethane	75-35-4	5 5	5
9.	1,1-Dichloroethane	75-35-3	5	5
19.	trans-1,2-Dichloroethane	156-60-5	5	5
11.	Chloroform	67-66-3	5	5
12.	1,2-Dichloroethane	107-96-2	5	5
13.		78-93-3	10	10
14.	1,1,1-Trichloroethane	71-55-6	5	5
15.		56-23-5	5	5
16.	Vinyl Acetate	108-05-4	10	10
17.		75-24	5	5
12.	1,1,2,2-Tetrachloroethane	79-34-5	5	5
19.		78-S 7-5	5	5
20.	trans-1,3-Dichloropropene	10061-02-6	5	5
21.	Trichloroethane	79-01-6	5	5
22.		124-45-1	5	5
23.	— ·	79-00-5		5 5 5 5
	Benzene	71-43-2	5 5	. 5
25.	cis-1,3-Dichloropropene	10061-01-5	5	5
26.	2-Chloroethyl Vinyl Ether	110-75-8	10	10
27.		75-25-2	5	5
28.	2-Hexanone	591-78-6	10	10
29.	4-Methyl-2-pentanone	108-10-1	10	15
30.	Tetrachloroethane	127-18-4	5	5

Table 3-11 (cont.)

	VOLATILES		Detec	tion Limits ⁽¹⁾
		CAS Number	Low Water ⁽²⁾ ug/l	Low Soil/Sediment ⁽³⁾ ug/kg
31.	Toluene	108-88-3	. 5	5
32.	Chlorobenzene	105-90-7	5	5
33.	Ethyl Benzene	100-41-4	5	5
34.	Styrene	100-42-5	5 5	. 5 5 5
35.	Total Xylenes		5	5
36.	Phenol	108-95-2	10	330
37.	bis(2-Chloroethyl)ether	111-44-4	10	33 5
38.	2-Chlorophenol	95-57-8	10	330
39.	1,3-Dichlorobenzene	541-73-1	10	330
40.	1,4-Dichlorobenzene	106-46-7	10	330
41.	Benzyl Alcohol	100-51-6	10	330
42.	1,2-Dichlorobenzene	95-50-1	10	330
43.	2-Methylphenol	95-48-7	10	330
44.	bis(2-Chloroisopropyl)ether	39638-32-9	10	33 0
45.	4-Methylphenol	106-44-5	10	330
46.	N-Nitroso-Dipropylamine	621-64-7	10	33 0
47.	Hexachloroethane	67-72-1	10	33 0
48.	Nitrobenzene	98-95-3	10	330
49.	Isophorone	78-59-1	10	33 0
<i>5</i> 0.	2-Nitrophenol	8 8-75-5	10	330
51.	2,4-Dimethylphenol	105-67-9	10	330
52. ⁻	Benzoic Acid	65-85-0	5 0 ·	1600
52.	bis(2-Chloroethoxy)methane	111-91-1	15	330
54.	2,4-Dichlorophenol	120-83-2	10	330
55.	1,2,4-Trichlorobenzene	120-82-1	10	33 0
56.	Naphthalene	91-20-3	15	330
<i>5</i> 7.	4-Chloroaniline	106-47-8	10	330
58.	Hexachlorobutadiene	87-68-3	. 10	330

Table 3-11 (cont.)

	VOLATILES		Detec	tion Limits(1)
		CAS Number	Low Water (2) ug/i	Low Soil/Sediment ⁽³⁾ ug/kg
59.	4-Chloro-3-methylphenol		_	
<i>)</i> , .	(para-chloro-meta-cresol)	59- 50-7	10	330
60.	2-Methylnaphthalene	91-57-6	10	330
61.	Hexachlorocyclopentadiene	77-47-4	10	330
62.	2,4,6-Trichlorophenol	88-06-2	10	330
63.	2,4,5-Trichlorophenol	95-95-4	50	1600
64.	2-Chloronaphthalene	91-58-7	10	330
65.	2-Nitroaniline	88-74-4	50	1600
66.	Dimethyl Phthalate	131-11-3	10	33 0
67.	Acenaphthylene	208-96-8	10	33 0
68.	3-Nitroaniline	99-09-2	50	1600
69.	Acenaphthene	83-32-9	10	330
70.	2,4-Dinitrophenol	51-28-5	5 0 .	1600
71.	4-Nitrophenol	100-02-7	50	1600
72.	Dibenzofuran	132-64-9	- 10	330
73.	2,4-Dinitrotoluene	121-14-2	10	330
74.	2,6-Dinitrotoluene	606-20-2	10	330
75.	Diethylphthalate	84-66-2	10	330
76.	4-Chiorophenyl Phenyl ether	7005-72-3	10	33 0
77.	Fluorene	86-73-7	10	· 33 0
78.	4-Nitroaniline	100-01-6	50	1600
79.	4,6-Dinitro-2-methylphenol	534-52-1	50	1600
89.	N-hitrosodiphenylamine	86-30-6	10	330
81.	4-Bromophenyl Phenyl ether	101-55-3	10	330
82.	Hexachiorobenzene	118-74-1	10	330
8 3.	Pentachloropheno!	87-86-5	50	1600
84.	Phenanthrene	85-01-8	10	330
8 5.	Anthracene	120-12-7	10	33 0
8 6.	Di-n-butylphthalate	84-74-2	10	330
87.	Fluoranthene	206-44-0	10	330

Table 3-11 (cont.)

			Detec	tion Limits(1)
	VOLATILES	CAS Number	Low Water ⁽²⁾ ug/l	Low Soil/Sediment (3) ug/kg
8 8.	Pyrene	129-00-0	10	330
٤9.	Butyl Benzyl Phthalate	85-68-7	10	330
90.	3,3'-Dichlorobenzidine	91-94-1	20	660
91.	Benzo(a)anthracene	5 6-55-3	10	330
92.	bis(2-ethylhexyl)phthalate	117-81-7	10	330
93.	Chrysene	218-01-9	10	330
94.	Di-n-octyl Phthalate	117-84-0	10	330
95.	Benzo(b)fluoranthene	2 05-99-2	10	330
96.	Benzo(k)fluoranthene	207-08-9	10	330
97. .	Benzo(a)pyrene	50-32-8	10	330
98.	Indeno(1,2,3-cd)pyrene	193-39-5	10	330
99.	Dibenz(a,h)anthracene	53-70-3	10	330
100.	Benzo(g,h,i)perylene	191-24-2	10	330
101.	alpha-BHC	319-84-6	0.05	8.0
102.	beta-BHC	319-85-7	0.05	2.0
103.	delta-BHC	319-86-8	0.05	8.0
104.	gamma-BHC (Lindane)	58-89- 9	0.05	8.9
105.	Heptachlor	76-44-8	0.05	2.3
	Aldrin	309-00-2	0.05	8.0
107.	Heptachlor Epoxice	1024-57-3	0.05	0.3
108.	Endosulfan I	959-98-8	0.05	2.3
109.	Dieldrin	60-57-1	C. 10	16.9
110.	L -DDE	72-55-9	C.10	16.0
111.	Endrin	72-25-8	0.10	16.0
112.	Endosulfan II	33213-65-9	0.10	16.9
113.	4,4-DDD	72-54-8	9.10	16.0
	Endosulfan Sulfate	1031-07-8	0.10	16.9
115.	4,4'-DDT	50-29-3	C.10	16.9
	Endrin Ketone	53494-70-5	C.10	16.0
117.	Methoxychlor	72-43-5	0.5	£0.0

Table 3-11 (cont.)

		Detection Limits(1)		
	VOLATILES	CAS Number	Low Water ug/1	Low Soil/Seciment ⁽³⁾ ug/kg
118.	Chlordane	57-74-9	0.5	8 0.0
119.	Toxaphene	8 001-35-2	1.0	160.0
120.	AROCLOR-1016	12674-11-2	0.5	85.0
121.	AROCLOR-1221	11104-28-2	0.5	80.0
122.	AROCLOR-1232	11141-16-5	0.5	80.0
123.	AROCLOR-1242	53469-21-9	0.5	8 0.0
124.	AROCLOR-1248	12672-29-6	0.5	80. 0
125.	AROCLOR-1254	11097-69-1	1.0	160.0
126.	AROCLOR-1260	11096-82-5	1.0	160.0

NOTES

- (1) Detection limits listed for soil/sediment are based on wet weight. The detection limits calculated by the laboratory for soil/sediment, calculated on dry weight basis, will be higher.
- (2) Medium Water Required Detection Limits (RDL) for Volatile Hazardous Substances List (HSL) Compounds are 100 times the individual Low Water RDL.
- (3) Medium Soil/Sediment RDL for Volatile HSL Compounds are 100 times the individual Low Soil/Sediment RDL.
- (4) Medium Water RDL for Semi-Volatile HSL Compounds are 100 times the individual Low Water RDL.
- (5) Medium Soil/Sediment RDL for Semi-Volatile HSL Compounds are 60 times the individual Low Soil/Sediment RDL.
- (6) Medium Water RDL for Pesticide HSL Compounds are 100 times the individual Low Water RDL.
- (7) Medium Soil/Sediment RDL for Pesticide HSL Compounds are 15 times the individual Low Soil/Sediment RDL.
- * Specific detection limits are highly matrix dependent. The a tection limit listed herein are provided for guidance and may not always be achieval to.

Table 3-11 (cont.)

REQUIRED DETECTION LIMITS RAS INORGANICS AND MISCELLANEOUS PARAMETERS

RAS Inorganics	Required Desection Level (RDL) (1X2) (ug/l)
Aluminum	20 0
Antimony	60
Arsenic	10
Barium	20 0
Beryllium	. 5
Cadmium	5
Calcium	50 00
Chromium	. 10
Cobalt	50
Copper	25
Iron	10:
Lead	5
Magnesium	50 00
Manganese	. 15
Mercury	C.2
Nickel	4D .
Potassium	500 0
Selenium	. 5
Silver	10
Sodium	500 0
Thallium	10
Vanadium	5 0 .
Zinc .	20
Cyanide	10

NOTES

(1) Any analytical method specified in Exhibit D of IFB WA 85-3838/3239 may be utilized as long as the documented instrument or method detection limits meet the RDL requirements. Higher detection levels may only be used in the following circumstance:

If the sample concentration exceeds two times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the RDL.

(2) These RDLs are the instrument detection limits obtained in pure water that must be met using the procedure in Exhibit E of IFE WA 84-3091/3092. The detection limits for samples may be considerably higher depending on the sample matrix.

Miscellaneou: Parameters	Required Detection Level Sater	Required Detection Level Soil and Sediment
Tota: Dissolved Solids	20 mg/1	NA ⁽³⁾
Total Surpended Solids	I-3 mg/I	p.z.
Hexavalent Cr.romium	1.0 ug/l	

(3) Not applicable

iron at 46,200 ug/L, lead at 568 ug/L, cyanide at 62 ug/L, magnesium at 245,000 ug/L, manganese at 1,380, mercury at 1.50 ug/L, nickel at 3,630 ug/L, potassium at 11,100, silver at 11 ug/L, sodium at 133,000 and zinc 855 ug/L. The second round of inorganic sample analyses determined aluminum to be present at 71,700 ug/L, arsenic at 11 ug/L, barium at 4,520 ug/L, cadmium at 23 ug/L, calcium at 488,000 ug/L, chromium at 599 ug/L, cobalt at 125 ug/L, iron at 278,000 ug/L, lead at 230 ug/L, magnesium at 138,000 ug/L, manganese at 38,200 ug/L, nickel at 12,300 ug/L, potassium at 12,000 ug/L, sodium at 106,000 ug/L, vanadium at 178 ug/L, zinc at 640 ug/L and hexavalent chromium at 130 ug/L.

Volatiles detected in W-3a consisted of trichloroethene at 92 ug/L, vinyl chloride at 5 ug/L, methylene chloride at 11 ug/L and trans-1,2-dichloroethane at 86 ug/L during the first round of sampling; during the second round trichloroethene was detected at 100 ug/L and trans-1,2-dichloroethane was found at 150 ug/L. The semivolatile analyses resulted in the detection of 2,4,6-trichlorophenol at 22 ug/L in the first round of sampling only. Inorganics detected at W-3a during the first round included calcium at 304,000 ug/L, iron at 348 ug/L, cyanide at 129 ug/L, magnesium at 24,300 ug/L, manganese at 1,270 ug/L, nickel at 270 ug/L, potassium at 20,100 ug/L, sodium 66,800 ug/L and zinc at 27 ug/L. The second round of inorganic analyses resulted in the detection of aluminum at 7,130 ug/L, arsenic at 21 ug/L, cadmium at 5.3 ug/L, calcium at 335,000 ug/L, chromium at 902 ug/L, copper at 606 ug/L, iron at 40,000 ug/L, lead at 57 ug/L, cyanide at 130 ug/L, magnesium at 38,200 ug/L, manganese at 1,760 ug/L, mercury at 1.30 ug/L, nickel at 1,770 ug/L, potassium at 28,600 ug/L, sodium at 77,200 ug/L and zinc at 1,280 ug/L.

All organic compounds detected in W-3b were also detected in the field blank. Inorganics found in the first round samples at W-3b included calcium at 149,000 ug/L, cyanide at 13 ug/L, magnesium at 47,200 ug/L, manganese at 255 ug/L, nickel at 211 ug/L, sodium at 80,300 ug/L and zinc at 32.0 ug/L. The second round of samples resulted in the detection of 153,000 ug/L of calcium, 19 ug/L chromium, 2,050 ug/L iron, 8 ug/L lead, 70 ug/L cyanide, 46,300 ug/L magnesium, 234 ug/L manganese, 32 ug/L nickel, 3,460 ug/L potassium and 74,700 ug/L sodium.

Volatile organics detected at W-4 in the first round of sampling included vinyl chloride at 40 ug/L, methylene chloride at 560 ug/L, trans-1,2-dichloroethane at 180 ug/L, chloroform at 95 ug/L, 1,2-dichloroethane at 45 ug/L and trichloroethene at 420 ug/L. The second round of sample analyses also detected trans-1,2-dichloroethane at 16 ug/L, chloroform at 19 ug/L, and trichloroethene at 160 ug/L. The semivolatile compound, 1,2-dichlorobenzene, was detected in both the first and second sample rounds at 28 ug/L and 26 ug/L, respectively. The first round analyses for inorganics yielded the detection of aluminum at 13,800 ug/L, arsenic at 33 ug/L, calcium at 352,000 ug/L, cyanide at 2,850 ug/L,

magnesium at 89,600 ug/L, nickel at 5,650 ug/L, potassium at 118,000 ug/L, and sodium at 551,000 ug/L. The second round of inorganic sampling resulted in the detection of aluminum at 4,630 ug/L, arsenic at 24 ug/L, cadmium at 16 ug/L, 473,000 ug/L, chromium at 222 ug/L, iron at 16,800 ug/L, lead at 57 ug/L, cyanide at 50 ug/L, magnesium at 138,000 ug/L, manganese at 1,690 ug/L, nickel at 11,600 ug/L, pctassium at 92,600 ug/L, sodium at 298,000 ug/L, vanadium at 14 ug/L, and zinc at 4,910 ug/L.

W-5 contained 24.0 ug/L of vinyl chloride, 6 ug/L of methylene chloride and 15 ug/L of trichloroethene in the first round of analyses for volatile organics. Inorganics detected in the first round of W-5 sampling included calcium at 228,000 ug/L, cyanide at 40 ug/L, magnesium at 37,800 ug/L, manganese at 1,390 ug/L, nickel at 2,210 ug/L, potassium at 41,201 ug/L, sodium at 132,000 ug/L and zinc at 214 ug/L. The second round of inorganic sampling analyses for W-5 yielded aluminum at 11,000 ug/L, arsenic at 44 ug/L, cadmium at 11 ug/L, calcium at 361,000 ug/L, chromium at 1,370 ug/L, copper at 1,150 ug/L, iron at 51,900 ug/L, lead at 61 ug/L, cyanide at 40 ug/L, magnesium at 58,500 ug/L, manganese at 1,980 ug/L, mercury at 2.70 ug/L, nickel at 2,450 ug/L, potassium at 28,300 ug/L, sodium at 120,000 ug/L, vanadium at 21 ug/L and zinc at 1,090 ug/L.

No volatiles were detected in W-6 with the exception of those also detected in the field blank at approximately the same concentration. Inorganics detected during the first sampling round included aluminum at 33,100 ug/L, arsenic at 47 ug/L, barium at 720 ug/L, beryllium at 6.5 ug/L, cadmium at 23 ug/L, calcium at 960,000 ug/L, chronium at 1,310 ug/L,

cobalt at 76.0 ug/L, copper at 644.0 ug/L, iron at 114,000 ug/L, lead at 388 ug/L, cyanide at 11.0 ug/L, magnesium at 209,000 ug/L, manganese at 11,200 ug/L, mercury at 0.90 ug/L, nickel at 1,350 ug/L, potassium at 13,400 ug/L, sodium at 196,000 ug/L, vanadium at 65 ug/L and zinc at 782.0 ug/L respectively. The second round of inorganic analyses yielded 36,600 ug/L of aluminum, 27 ug/L arsenic, 746 ug/L barium, 16 ug/L cadmium, 488,000 ug/L calcium, 867 ug/L chromium, 53 ug/L cobalt, 260,000 ug/L iron, 240 ug/L lead, 130,000 ug/L magnesium, 5,120 ug/L manganese, 0.30 ug/L mercury, 601 ug/L nickel, 13,100 ug/L potassium, 153,000 ug/L sodium, 120 ug/L vanadium and 537 ug/L zinc.

3.5 Casing Elevation Survey and Water Level Measurements

3.5.1 <u>Purpose</u>. Following completion of the monitoring well installation, the mean sea level (MSL) elevations of the protective steel casing and stainless steel riser piper were surveyed. The wells, staff gauge, borings and other pertinent features were located. This data, in conjunction with the water level measurements enabled HART personnel to contour the potentiometric surface and determine groundwater flow direction.

3.5.2 Methodology

- 3.5.2.1 Well Elevation Survey. Elevations were determined by utilizing differential leveling techniques. The elevations were surveyed from Bench Mark 0153 (supplied by the City of Kalamazoo), to an accuracy of 0.01 feet using a Wild NA24 Auto Level. To insure consistency of measurements, elevations were shot to the northern side of the outer protective casing and inner riser pipes.
- 3.5.2.2 Water Level Measurements. Water level measurements at all wells and staff gauge were made with the use of a hand held electronic water level indicator manufactured by the Slope Indicator Company. The instrument probe was lowered from the top of the protective casing down the well. When the probe came in contact with the water, an audio signal was emitted and the distance to the top of the protective casing was measured.

- 3.5.2.3 Well Location and Topographic Survey. The monitoring wells, soil borings and other pertinent features were located using a Sokkisha BT 20 Transit and a 100' steel tape. Ground elevations were surveyed using a Wild NA24 Auto Level to an accuracy of 0.1 feet while manhole casing elevations were surveyed to an accuracy of 0.01 feet in order to determine storm and sanitary sewer flow directions.
- 3.5.2.4 Findings. Results of the survey and the five rounds of groundwater level measurements can be found in Table 3-12. The resultant potentiometric surface can be found in Figures 3-C through 3-G. Well and borehole locations as well as the topography at the Auto Ion Site is depicted on the Site maps included as Appendix I. Water level measurements indicate the potentiometric surface has changed shape and direction several times throughout the monitoring process, and may be a function of river level in the adjacent Kalamazoo River. The change in direction of groundwater flow could result in substantial deviations in the groundwater analytical data generated during one sampling event when compared to the data generated during subsequent sampling events at different times.

3.6 Permeability Testing

- 3.6.1 <u>Purpose</u>. Hydraulic conductivity (K) is the volume of water that will flow through a unit cross sectional area in a unit time under a unit a hydraulic gradient and at a standard temperature. In order to determine the average hydraulic conductivity values of underlying geologic formations, HART conducted aquifer tests at the Auto Ion Site. Aquifer tests were performed on a total of six monitoring wells. All of the wells had two inch diameters and screen lengths of 10.7 feet. The wells were all screened in unconsolidated material.
- 3.6.2 <u>Methodology</u>. A single borehole permeability test, known as the Slug Test, was implemented at the aforementioned Site. <u>Initially</u>, using an electronic water level indicator, the static water level (H) in each well was measured and recorded. Two methods were used to generate slug test data. The first method involved lowering a decontaminated aluminum

TARLE 3-12

WELL DATA

WELL NO.	GROUND LEVEL		FEET MSL TOP OF RISER	ROTTOM ELEVATION	FIEVATION OF SCREENED INTERVAL	11/3/87	WATER 01/08/88	LEVELS 02/21/88	03/07/88	3/25/88
W-1	761.46	764.30	744.10	742.46	755.46 10 744.76	753.87	754.99	755.52	755.22	754.95
N-5	762.66	765.35	765.13	745.56	756.26 10 745.56	753.99	754.59	755.53	755.09	754.84
W-3n	762.63	764.60	764.38	745.63	756.33 10 745.63	752.49	754.55	755.51	754.99	754.81
W-3h	762.51	764 65	764.36	712.01	727.41 10 716.71	752.46	754.45	755.62	754.88	754.82
W · 4	764.11	765.71	765.43	740.11	751.81 TO 741.11	752.46	754.39	755.62	754.86	754.79
V	763.36	765.77	765,55	739.36	750.86 10 740.16	752.86	754.33	755.65	754.83	754.77
W. &	764.06	766.19	765.94	740.06	751.26 10 741.06	753.67	754.32	755.79	754.79	754.73
STAFF GAUG	ie.	757.22				754.24	753.82	756.28		754.62

slug into the well displacing a known volume of water. The test was initiated at the instant the slug was emplaced. Water levels were monitored with time until equilibrium conditions had been established. The second method involved removing the emplaced slug and monitoring the water levels after removing the volume that the slug had displaced from the well. Therefore, the slug, which displaces a known volume of water, was either instantaneously installed in the well, or instantaneously removed from the well. Afterward, either the rate of recharge or the rate of recovery from the well was measured at frequent time intervals, using an electronic water level indicator, until equilibrium was reached. The measurements and their respective times were recorded for further calculations.

To begin the test a water level monitoring probe was installed in the well and then set to zero for initial conditions. The slug was either introduced or removed from the well depending on which test was being conducted and measurements of water level change, $H_{\rm meas}$, with time were initiated. Because there is a slight time-lag between the instant the slug is introduced or removed in the well and the first measurement, time zero, $t_{\rm o}$, is assigned to the time of maximum water level differential, $H_{\rm max}$. Using these measurements and $t_{\rm o}$, the ratio of $H_{\rm meas}/H_{\rm max}$ was determined for each recorded measurement.

These values were plotted on 5 cycle semi-logarithmic paper with respect to their specific time interval (t) in minutes. Calculations and the plotted graphs are provided in Appendix VI.

Data reduction for the monitoring wells followed methods set forth by Hvorslev et al. (1951). After the values for H_{meas}/H_{max} were plotted with respect to their specific time interval (t) in minutes, the value of T_{o} (basic time lag) is measured graphically where the slope of the plotted line intersects the H_{meas}/H_{max} value of 0.37. The expression for hydraulic conductivity (K) from Hvorslev (1951) is:

where:

K = hydraulic conductivity (cm/sec)

r = radius of casing (cm)

L = length of piezometer intake (cm)

R = radius of piezometer intake (cm)

T = basic time lag (sec)

3.6.3 <u>Findings</u>. The specific values and calculated hydraulic conductivities for the six wells can be found in Table 3-13, the actual field data is found in Appendix VI. Note that the hydraulic conductivity values (K) which were determined describe only the hydraulic conductivity of the material close to each well (Cooper, et al., 1967).

The slug in test for W-3a rendered data that was unusable for determining K and was therefore discarded. The slug in and slug out test for the individual well that remained gave comparable values of K. All of the wells, excluding W-3b are screened at a depth of approximately 10-20 feet, with W-3b screened deeper at 35-45 feet. The mean hydraulic conductivity for all wells was 3×10^{-2} cm/sec. The greatest deviation from this mean value occurred at W-6 where K values were increased to 9.4 $\times 10^{-2}$ cm/sec. W-4 showed the lowest K value of 1.1×10^{-3} cm/sec.

There are a number of general assumptions on which this type of aquifer test is based, such that:

- * the well is of finite diameter;
- * the well is non-flowing;
- * the well is cased to the top of a homogeneous isotropic aquifer of uniform thickness; and
- * the well is fully developed and penetrates throughout the thickness of the aquifer.

Few wells completely penetrate an aquifer. However, useful information is derived from a test on a partially penetrating well. Since the vertical permeabilities of most stratified aquifers are only small

TABLE 3-13

SPECIFIC VALUES AND HYDRAULIC CONDUCTIVITIES OF MONITORING WELLS

"I" or "O" Denotes Slug in or Out

Well T _o (min)	T _o (sec)	casing (cm)	L _{screen} (cm)	R _{intake} (cm)	K(cm/sec)	K _{ave.} (cm/sec)
	- 2					-3
J-11 4.4x10	2.64	2.54	323.09	2.54	1.83 x10	
	-5					-2 6. 25⁻³
7-10 7.2x10	4.32	2.54	323.09	2.54	1.12x10	•
. 3. / /	-2	2.54	724 14	2.54	1.82×10	-2
J-21 4.4x10	2.64 -2	2.54	326.14	2.54	1.02810	-2 1.73 ⁻²
u-20 4.9x10	2.94	2.54	326.14	2.54	1.63x10	
I-3a1		2.54	326.14	2.54	•••••	
	-5					-2
/-3 a 0 1.9	x10 1.1	4 2.54	326.14	2.54	4.21x10	
	• 2					-2
/-3b1 3.3	x10 1.9	8 2.54	326.14	2.54	2.43x10	-2 2.19 ⁻²
/-3b0 4.1	-2 ×10 2.4	6 2.54	326.14	2.54	1.95×10	2.17
. 4.1	.3	0 2.34	320.14	2.54	,	-2
W-60 8.5	x10 0.5	1 2.54	326.14	2.54	9.42x10	
	-1					-3
1-41 7.2x10	43.20	2.54	326.14	2.54	1.11x10	
	•1					-3 1.1 ⁻³
W-40 7.4x10	44.40	2.54	326.14	2.54	1,08x10	

Monitor well #5 slug test data lost during data recovery from data logger.

fractions of the horizontal permeabilities, the direction of flow during the slug test is essentially two-dimensional (Cooper, et al., 1967).

3.7 Surface Water and Sediment Sampling

3.7.1 Purpose. The 1971 investigation of the Auto Ion Chemical Company by the Michigan Department of Natural Resources had indicated elevated concentrations of chromium, nickel, copper, cyanide and oil in sediments of the Kalamazoo River near the facility. In 1987 and 1988, surface water and sediment samples were collected in the Kalamazoo River to determine whether residual chemical concentrations were present and if present, to define the nature and extent of the contamination within the vicinity of the Site. In conjunction with the sampling, a review of agency records was conducted to identify any NPDES permit holders past or present within 1/2 mile upstream and 1 mile downstream of the Site.

All surface water and sediment sampling locations are depicted in Figures 3-H and 3-I and listed in Tables 3-14 and 3-18. Transect A was located east of the Mill Street Bridge upstream from the Auto Ion Site and represented background or control samples. Transects B, C, and D were located within the Auto Ion Site near prior river water intakes and waste outfalls, and E and F were located 1/2 and 1 mile downstream from the Site.

3.7.2 Methodology. Six transects (A-F) of the river were sampled to incorporate data upstream from the Site (Figure 3-I and Table 3-18), within the Site, and 2 locations 1/2 and 1 mile respectively, downstream from the Site (Figure 3-H). Each transect consisted of 4 sampling points, set at evenly spaced intervals across the transect. The original work plan had called for 10 foot intervals between stations but field reconnaissance established that greater spacing would be required to adequately sample the entire transect. A rope was stretched tautly from the north and south river banks and marked in 10 foot increments to facilitate recording the location of each sampling point. One sediment sample was taken at each sampling station. In addition, a surface water sample was taken prior to sediment sampling at sampling stations D-1, D-4, A-1, and A-4. Ph, conductivity and temperature were recorded at each water sampling location

N

TABLE 3-14

AUTO ION SURFACE WATER SAMPLES

<u>Sample</u>	Date <u>Sampled</u>	맲	Water Temperature C	Air Temperature C	Specific Conductivity Manhos/can
SW-A1	10/87	7.4	11	8	700
SW-A4	10/87	7.7	10	8	700
SW-D1	10/67	7.4	10	8	680
SW-D4	10/87	7.4	10	8	70 0

TABLE 3-15

AUTO ION

SUMMARY OF ORGANIC CONCENTRATIONS ABOVE CRDL IN UC/L

SURFACE WATER SAMPLES

•	<u>Al</u>	<u>A4</u>	A4D	<u>D1</u>	匠
Volatile Organics					
Acetone	-	-	-	44	20
Base Neutrals					
Bis (2-ethylhexyl) phthalate	420	30 0	96	94	140
					_,,

⁻ below CRDL

Table 3-16

AUTO DON SITE REGI-VOLATILE MOLLYSIS SUPPLIKT SHEET FOR SURFACE VATER ALL USERALE DATA MOVE CPIL (UG/L.)

CORCUE	SV- A-1	34- 3-2	9-1-0	S D-1	5 9-2-4
Phonol	ט	U	υ	U	U
bis (2-Chloroethyl) ether	U	U	Ü	Ü	V
2-Chlorophenol	U	บ	บ	บ	U
1.3-Dichlorobezene	U	U	U	U 	U
1,4-Dichlorobenzene	บ บ	บ บ	บ บ	บ บ	บ บ
Benzyl alcoic. 1.2-Dichloropenzene	υ	บ	บ	บ	v
2-Methylphenol	Ü	บ	บ	Ŭ	Ŭ
bis (2-Chloroisopropyl) ether	v	${f v}$	U	U	IJ
4-Hethylphenol	u	v	v	U	υ
N-Natroso-da-e-dapropylamane	U	U	υ	ľ	U
Besachloroethane	r	บ บ	U	บ บ	r E
Ni trobenzene Isophorone	f.	บ	บ บ	2	r
2-Nitrophenol	Ü	ັບ	บ	บ	
2,4-Dimethylphenol	บั	ľ	ŭ	ť	
Benzoic acić	U	Ľ	υ	v	υ
bus (2-Chloroethoxy methals	ľ	r	U	Ü	υ
2,4-Dichlorophen:	υ	U	Ü	บ	U
1,2,4-Traciloroberzene	U	U	U 	U	ľ
Naphthalene 4-Chloroarithne	v v	v v	บ บ	บ บ	t t
Bexacilorobitadiene	บ	บ	ľ	υ	บ
4-Chlore-3-methylphenol	υ	ŭ	ΰ	ř	Ü
2-Hethylmaphthalene	Ü	ับ	υ	ľ	Ū
Hexachlorocyclopent attene	ľ	U	์ บ	U	U
2,4,6-Trichlorophenol	υ	v	v	ย	U
2,4,5-Tracilorophesol	U	r	v	U	Ü
2-Odorovanimiene	Ü	ຸ່ນ	ľ	ľ	ľ
2-Natroaniline	บ ย	U U	v v	u u	u u
Dimethylphthalate Amenaphthylens	บ	ย	u u	บ	. "
2.6-Diritrotoluene	บ	บ	บ	Ü	ť
3-Nitroaniline	Ü	ť	Ü	Ü	Ü
Acenaphthene	υ	U	v	v	υ
2.4-Dimitrophenol	U	ľ	U	U	r
4-Natrophens.	บ	v	บ	v	v
Dibenzofura:	Ü	t	U	ນ 	ľ
2,4-Dinitrotoluene	r r	บ บ	ľ	v v	r T
Diethylphthalate 4-Chlorophenyl-phenyl ether	บ	v	ซ	บ	J:
Fluorene	ľ	Ü	ΰ	บ	ť
4-Nitrosnilin-	ľ	÷	r	ť	÷
4,6-Insurre-S-mainslabens	:	t	:	r	Ţ
N-ni trosoči pienylamine	. i	u u u	r	ü	מנטטטט
4-Bromophenyl-phenylether	:	Ľ	ï .	ľ	ü
Revac' Lorobertzene	ľ	ÿ	ľ ľ	i.	Į.
Fentacilorop: encl Phenanthrens	ř	÷	:	:	•
Arthracene	ï	ř	ï	t t t	v
Di-n-bury lphthalate	r	v v v v	r v	r	v
Fluoranthera	υ	ť	ï		;;
Pyrene	v	ľ	v	Ľ	:
Burylberrylphinelate	r	ľ	r	ï	ľ
3.3'-Dianorcoerciális	r 	Ϊ,		r.	:
benzola antiratena	r r	r r	:	u u	
Conysene bis (1-Eurylinery)) puthaliste	42 5	300	ę.	9 1	
Di-n-octylphthalate	•	i i	; !	.~ !	I.
Benzo (z. fluoranthene		ΰ	t t t t t t t t t t t t t t t t t t t	÷	v :
Benzo(*:fluorantnene	v v	υ υ υ υ	ï	ľ	:
Bendo le pyrelie	:	ľ	r	ľ	:
Indeto 1.1.1-ci.Fyrene	:	ť	ï	ï	:
Dibetion out Anthrenene	ï.	Ľ	ï	ï	•
bernight Feryle	::	:	::	:	:
}-Nitroaniline	ľ	ï		•	

Table 3-17

AUTO ION SITE INCRGANIC ANALYSIS SUPERRY SHEET FOR SURFACE WATER ALL USEABLE DATA ABOVE CRDL (UG/L)

METAL	SW-D-1	51:-D-4	SV-A-4	SN-A-4D	SV-A-1
Lluminu m	219	207	υ	u	υ
Antimony	U	υ	υ	υ	U
Arsenic	υ	υ	U	บ	ָ ט
Barium	U	U	บ	ប	U
Beryllium	v	Ü	υ	υ	U
Cadridum.	13.6	12.0	U	บ	U
Calcium	76800	77000	73900	72600	74000
Chronium	39.0	37.0	ŭ	υ	7.0
Cobalt	v	υ	u	U	υ
Copper	32.0	32.0	. v	υ	ับ ·
Ira.	527	39 <u>î</u>	3 £3	291	463
Lead	193.0	199.0	U	υ	v
Cyanide	R	ĸ.	R	R	, E
liagnesi ur	20200	22300	22200	21800	22200
Hançatiese	58.0	48.0	43.0	37.0	49.0
Herow;	υ	r	v ·	u	Ü
Nickel	60.0	61.0	Ü	. U	u
Potessum	r	υ	r	ย	ï
Selenium	τ	τ.	r.	ij .	:
Silver	27.0	28.6	- c.o	c.c	2.3
Socie	15900	15700	17200	16800	17100
Thallium	ŭ	r '	r	υ	v .
Vanatium	τ	. u	r ·	บ	υ
2110	26.0	.U	· ·	27.0	13.0
Hene-Chroniu	r v	r	. .:	ŗ	v

TABLE 3-18

AUTO ION SEDIMENT SAMPLES

Sample	Date Sampled	Depth in Feet	Feet From North Shore	Sample Description
SD-A1 SD-A1-2	10/08/87 03/88	9.0	10	<pre>f-m sand with silt m-c gravel; one snail</pre>
SD-A2 SD-A2-2	10/87 03/88	8.0	30	f-m gray sand with silt with coarse gravel size material resembling railroad slag, well rounded snail shells 5mm-25mm long
SD-A3 SD-A3-2	10/E7 03/88	9.0	40	<pre>f-m sand with silt little fine gravel, one snail m-c gravel and some sand</pre>
SD-A4 SD-A4-2	10/87 03/88	9.0	50	<pre>f-m sand with some silt m-c gravel some sand snail and clam shells</pre>
SD-A5-2	03/88		60	m-c gravel with some sand
SD-B1 SD-B1-2	03/88	4.0	30	coarse sand some gravel snail, clam gravel, silt, shells, snail
SD-B2 SB-B2-2	10/87 03/8 8	5.0		gravel with f-c sand, clams black silt, gravel sand
SD-B3 SD-B3-2	10/87 03/88	5.0		m-c gravel f-m sand and S.H sand, gravel clam shell clam shell
ST-B4 SD-B4-2	10/87 03/88	4.5		m-c rounded gravel with f-m sand and silt
SD-C1 SD C1-2	10/87 03/8 8		15	coarse gravel sand, rounded gravel
SD-C2 SD-C2-2	10/87	5.0	50	coarse rounded gravel fresh water clams gravel small shell and worms
SD-C3 SD-C3-2	10/87 03/88	6.5	90	coarse gravel and sand sand, gravel, shells clar shell

Absent data not collected.

TABLE 3-18 (CONDITUED)

AUTO ION SEDIMENT SAMPLES

<u>Sample</u>	Date <u>Sampled</u>	Depth in Feet	Feet From North Shore	Sample Description
SD- C4 SD- C4-2	10/87 03/8 8	5.0		coarse sand and gravel sand and gravel 7"
SD-D1 SD-D1-2	10/87 03/88	7.0	3	coarse sand and gravel with organic silty muck
SD-D2 SD-D2-2	10/87 03/88	7.0	60	coarse gravel, fine sand sand, gravel, live clam
SD- D3 SD- D3-2	10/87 03/8 8	5.0	100	gravel, some coarse sand sand, gravel, live clam
SD-D4 SD-D4-2	10/87 03/88	5.5		m-c sand with some gravel sand and gravel
SD-E1	10/87	6.5		not recoverable, gravel only
SD-E1-2	03/88		3 0	gravel with some sand
SD-E2-?	10/87 03/88	2.5	60	sand and gravel sand and gravel
SD-E3 SD-E3-2	10/87 03/86	1.5	4 5 9 0	sand and gravel, snail sand and gravel
SD-E4	10/87	2.0	15	<pre>sand silt and gravel, snails</pre>
SD-E4-2	03,/88		120	gravel, clam shell
SD-F1 SD-F1-1	10/87 03/88	8.0	20 30	leaves, muck, fine sand to greenish silt
SD-F2 SD-F2-2	10/27 03/88	11 :	4 0 5 0	<pre>f-c sand organic material, sinf gravel, snails</pre>
SD-F3	10/87	90.0	6 0	silty sand and gravel,
SD-F 3-2	33/88		75	well sorted sand
SD-F4 SD-F4-2	10/ε7 03/εε		80 100	lezves lezves, large clam shell

^{*} Samples were collected in two rounds of sampling. Inorganics, volatiles, and semi volatiles were sampled for in 10/87. PCBs and pesticides were sampled for in 03/88.

Absent data not collect.

(Table 3-14). Sediment sampling was done in two stages. Analyses for inorganics (metals and cyanide), volatiles and semivolatiles were done on surface water and sediment samples taken in October of 1987. Sediments were re-sampled in March of 1988 for PCB's and pesticides.

The following sampling procedures were followed for each sediment sample. A two man boat was pulled to the sampling station. A Ponar Grab Sampler was lowered to the river bottom, sample was scooped and returned to the surface where it was deposited directly into a clean stainless steel bowl. This was then stirred with a clean stainless steel trowel to homogenize the sample. Sampling continued until enough sediment had been obtained. The boat was then returned to the bank where the sample was placed in sample containers using the trowel.

The sampler, trowel, and bowl were decontaminated after each sampling event to prevent cross contamination between sampling stations. Decontamination procedures consisted of a wash in alconox detergent, rinsing with distilled water, spraying with methanol and a final rinse with distilled water. Surface water samples were collected prior to sediment sampling at four stations by directly immersing the sampling container in the upper one foot of the river.

All samples were collected, as per EPA protocols, in laboratory cleaned sample bottles provided by Century Laboratory and stored on ice immediately after sample collection. Chain of Custody documentation procedures were used to insure accurate identification of samples and tracking of their status, in the field, during shipment, and at the laboratory. Laboratory analyses included inorganics, volatiles, semivolatiles and PCB's and pesticides.

3.7.3 Findings

3.7.3.1 Surface Water. A summary of the analytical parameters above required detection limits (RDL) can be found in Tables 3-15 through 3-17. Analyses included metals, cyanide, volatiles and base neutrals. Only compounds

3-89

in the following summary. Data sheets, case narratives and a QA/QC review of the data for surface water samples are contained in Appendix V.

Surface water temperatures ranged from 10 to 11 degrees centigrade, pH ranged from 7.4 to 7.7 and conductivities ranged from 680 to 700 umhos/cm. The pH of 7.7 came from Station 4 on transect A (upstream background samples) while the one lower conductivity (680 umhos/cm) came from station 1 on transect D.

In the organic fraction of the analyses, only one compound exceeded detection limits. Bis(2-ethylhexyl)phthalate was detected in all surface water samples and ranged in value from 94 to 420 ug/l, with higher values occurring along the A transect.

In the inorganic analyses of surface water samples, metals which exceeded the CRDL were aluminum, cadmium, lead, nickel, silver, chromium, copper, iron, calcium, magnesium, manganese, sodium and zinc. Concentrations of calcium, magnesium, manganese, iron, and sodium indicate values typically found in naturally occurring surface water and are similar to background samples taken along the A-transect. Chromium, cadmium, copper, lead, silver and zinc concentrations on transect D exceed A transect background values. Aluminum ranged from 219 to 207 ug/L in D1 and D4, respectively. Hexavalent chromium was not detected in any of the surface water samples.

3.7.3.2 Sediments. Field descriptions of the sediment samples collected at each station are listed in Table 3-18. Sediments ranged in grain size from gravel to sand and slit with abundant organic matter present in a few of the samples, and fresh water invertebrates in many of the samples. Organic, inorganic, and pesticide/PCB analytical results for the sediment samples are summarized in Table 3-19, 3-20, 3-21 and Figures 3-J through 3-M.

AUTO ION SITE ORGANIC ANALYSIS SUMMARY SHEET FOR SEDIMENTS ALL USEABLE DATA ABOVE CRUL (UG/KG)

COMPOUND	2D-YI	SD-12	SD-A3	SD-24	SD-B1	SD-61 D	SI-B2
Chloromethane	υ	บ	บ	U	U	υ	ប
Bronomethane	U	บ	บ	U	บ	U	U
Vinyl Chloride	ប	U	U	บ	บ	IJ	บ
Chloroethane	บ	ប	ប	U	U	R	บ
Methylene Chloride	R	R	R	R	R	บ	R
Acetone	R	R	36	R	R	U	R
Carbon Disulfide	บ	บ	บ	U	ប	ľ	U
1,1-Dichloroethene	บ	บ	v	n .	U	υ.	U
1,1-Dichloroethane	U	U	U	บ	บ	U	U
Trans-1,2-Dichloroethane	, n	U	r	U	v	U	U
Chloroform	บ	บ	U	U	บ	v	U
1,2-Dichloroethane	ប	u	ับ	บ	U	U	์ ซ
2-Butanone	บ	ប	U	U	U	U	บ
1,1,1-Trichloroethane	บ	บ	υ	Ü	υ	Ü	บ
Carbon Tetrachloride	U	บ	U	U	บ	U	U
Vinyl Acetate	U	U	U	U	U	Ų	U
Bromodichloromethane	U	ប	ŭ	บ	IJ	U	U
1,2-Dichloropropane	บ	U	บ	ប	U	:	U
Trans-1,3-Dickloropropene	υ	ឋ	r	บ	บ	U .	U
Trichloroethene	ប	ម	U	บ	ប	U	U
Dibromoshloromethane	r	บ	U	บ	Ü	U	U
1,1,2-Trichloroethane	υ	u	U	ับ	บ	U	U
Benzene	U	U	U	U	U	U	υ
cis-1,3-Dichloropropens	U	บ	ប	U	U	U	U
2-Chloroethylvinylether	U	Ü	u	ប	Ü	υ	U
Bromoform.	r	U	U	ប	บ	บ	U
4-Methyl-2-Pentanone	${f v}$	ប	บ	r	ដ	U	U
2-Hexanone	r	U	Ü	U	ប	ប	U
Tetrachloroethens	บ	IJ	ប	บ	U	ľ	v
1,1,2,2-Tetrachloroethane	Ü	υ	Ü	บ	ľ	U	Ü
Toluene	ប	ï	บ	Ü	บ	Ţ	Ü
Crlorobenzene	U	ซ	υ	ľ	ï	ΰ	ü
Ethylbenzene	U	ប	บ	υ	U	υ	Ü
Styrene	Ü	υ	บ	υ	ľ	Ü	ľ
Total Xylenes	Ü	υ	U	ប	ij	Ü	r,

AUTO ION SITE ORGANIC ANALYSIS SUPPRRY SHEET FOR SEDIMENTS ALL USEABLE DATA ABOVE CRUL (UG/KG)

COPCUD	SD-£3	SD-84	SD-C1	SD-C2	SD-C3	SD-C4	SD -D1
Chloromethane	บ	บ	บ	บ	u	U	บ
aronomethane	ij	บ	บ	บ	U	U	U
Vinyl Chloride	บ	บ	υ	U	ບ	บ	. U
Chloroethane	Ü	U	บ	ប	บ	บ	U .
Methylene Chioride	Ē	R	R	R	R	R	R
Acetone	Ř	R	R	R	R	ľ	R
Carbon Disulfide	บ	บ	U	∙ับ	ប	ប	U
1,1-Dichloroethene	Ü	Ü	บ	บ	ับ	บ	U
1.1-Dichloroethane	บ	บ	ប	บ	บ	บ	U
Trans-1,2-Dichloroethane	บ	U	บ	ΰ	ប	ប	u
Chleroform	Ü	บ	บ	บ	· U	บ	U
1,2-Dichloroethane	• ម	U	U	บ	บ	บ	Ü
2-Butanone	บ	บ	U	U	U	บ	ប 11
1,1,1-Trichloroethane	บ	บ	r	U	· U	U	•
Carbon Tetrachloride	บ	U	υ	U	U	U	U II
Vinyl Acetate	บ	U	บ	U	U	บ 	ט זו
Bromodichloromethane	. ប	U	บ	· u	ប	Ü	U U
1,2-Dichloropropane	บ	Ŭ	บ	U	Ŭ	ľ	ŭ
Trans-1,3-Dichloropropene	บ	U .	U	U	U	. II	ti
Triciloroethene	ប	ľ	υ	ប	υ,	. U	ľ
Dibromociloromethane	υ	Ū	U	ប	Ü	Ü.	u U
1,1,2-Trichloroethans	υ·	บ	, U	ប	บ บ	U.	์ ซ
Benzene	U	ับ	u	U .	บ	บ	Ü
cis-1,3-Dichloropropene	บ	U	U	U	li Li	บ	Ü
2-Injoroethylvinylether	ប	U	Ŭ	Ü	u U	บ	Ŭ
Bromoform	v	· • • •	' U -	_	. U	ซ	บ
4-Methyl-2-Pentanone	U	, U	U	. U	Ü	. U	บ
2-Hexanone	U	Ü	. U	. "	U.	Ü	Ü
Tetrachioroethene	U	Ľ	ľ	บ	r U	ΰ	Ü
1,1,2,2-Tetrachlorosthams	ប	Ü	Ľ	U	บ	Ü	Ü
Toluene	ប	ប	<u>.</u>	. U	**	T.	Ü
Chlorobenzene	U	τ		r .	ับ	บ	U -
Ethylberzene	\ddot{v}	Ŭ.	•	ľ	Ü	Ü	บ
Styrene	U ,	Ľ.	u · · · · · · · · · · · · · · · · · · ·	ij	, ,		υ
Total Xylenes	ΰ	· U	υ	U			

Table 3-19 (cont.)

AUTO ION SITE ORGANIC ANALYSIS SUPPARY SIDET FOR SEDIMENTS ALL USEABLE DATA ABOVE CROL (UG/KG)

COMPOUND	SD-D2	SD-D 3	SD-D4	20- 55	20-E 3	SD-E4	SD-F1
Chloromethane	U	U	บ	U	บ	U	u .
Bronomethane	ប	U	U	U	U	บ	U
Vinyl Chloride	U	บ	U	บ	บ	U .	ั
Chloroethane	U	บ	บ	บ	บ	U	υ
Methylene Chloride	R	R	R	บ	R	บ	U
Acetone	R	R	R	บ	บ	R	U
Carbon Disulfide	ប	U	บ	บ	บ	ប	U
1,1-Dichloroethene	U	บ	U	U	U	U	U
1,1-Dichloroethane	· U	· ប	บ	ซ	U	υ	U
Trans-1,2-Dichloroethane	U	Ü	U	บ	บ	U	U
Chioroform	U	U	ָ ט	บ	บ	บ	U
1,2-Dichloroethane	U	บ	Ū	บ	บ	ָ ע ָ	U
2-Butanone	13	U	บ	U	U	U	v
1,1,1-Trichloroethane	U	ប	U	u	. U	บ	U
Carbon Tetrachioride	ប	บ	U	U	บ	บ	u
Vinyl Acetate	U	U	U	U	u	U	U
Bromodichloromethane	U	υ	U	U	บ	บ	U
1,2-Dichioropropane	U	ับ	U	U	U	ប	U
Trans-1,3-Dichloropropene	U	U	ប	U	U	U	U
Trichioroethene	Ū	U	U	U	U	U	U
Dibromochioromethane	บ	U	U	U	U	U	บ
1,1,2-Trichloroethane	U	ប	ប	U	U	บ	U
Benzene	Ţ	บ	บ	U	ប	${\tt v}$	ប
cis-1,3-Dichloropropene	U	บ	บ	ប	U	U	u
2-Chioroethylvinylether	υ	U	บ	บ	บ	ť	U
Bromoform.	U	U	ប	บ	บ	${\bf v}$	บ
4-Methyl-2-Pentanone	Ü	Ü	บ	บ	U	ប	U
2-Hevanone	Ü	ប	Ü	ľ	U	บ	U
Tetrachloroethene	Ľ	ÿ	Ü	U	บ	U	U
1,1,2,2-Tetrachloroethane	•	Ü	Ü	บ	Ü	ប	Ü
Toluene	Ù	v	บ	Ü	υ	υ	ប
Chlorobenzene	Ü	Ü	บ	บ	U	U	ľ
Ethylbenzene	Ü	Ū	บ	ŭ	υ	r	\mathbf{v}
Styrene	Ü	Ū	U	υ	ប	ľ	Ü
Total Xylenes	Ū	r	Ü	Ü	U	υ	v .

U= Below CFDL R= Unuseable data

AUTO ION SITE ORGANIC ANALYSIS SUMPARY SHEET FOR SEDIMENTS ALL USEABLE DATA ABOVE CROL (UC/KG)

COMPOUND	SD-F2	2D-1 3
Chloromethane	υ	υ
Bromomethane	U	U
Vinyl Chloride	บ	Ų
Chloroethane	U	U
Methylene Chloride	U	บ
Acetone	U	16
Carbon Disulfice	U	U
1,1-Dichloroethene	. บ	U
1,1-Dichloroethane	บ .	บ
Trans-1,2-Dichloroethane	U	U
Chloroform	U	U
1,2-Dichloroethane	U	U
2-Butanone	ប	บ
1,1,1-Trichloroethane	U	U
Carbon Tetrachloride	U	U
Vinyl Acetate	U	υ
Bromodichloromethans	บ	บ
1,2-Dichloropropane	U	U
Trans-1,3-Dichloropropene	U	U
Trichloroethene	Ŭ	v.
Dibromochloromethans	U	U
1,1,2-Trichloroethane	U	U
Benzene	ប	r
cis-1,3-Dichloropropene	U	U
2-Chloroethylvinylether	v	U
Brosoform	ប	บ
4-Methyl-2-Pentanone	U	Ū
2-Hexanone	ប	U
Tetrachloroethene	ប	υ
1,1,2,2-Tetrachloroethane	ប	v
Toluene	ប	υ
Crlorobenzer.e	U	U
Ethylbenzene	Ü	U
Styrene	U	U
Total Xylenes	U	U

C-VILLITLE NATURES SEPTEMENTS FOR SENDINGES ALL USEANE SHEET FOR SENDINGES ALL USEANE SHEET FOR SENDINGES

his (?-Chloroethyl) ether ?-Chlorophenc) 1.7-Dictiorobersene l.4-Dictiorobersene l.4-Dictiorobersene Phicitylyhamol his (?-Chlorovisopropyl) ether 4-Hethylyhamol Hittmo-di-n-dipropylicine Remchiloroethane Lophorone L	@No.
មានប្រជាពលរបស់ ពីស្រាជភាពភាពសម្មានភាពស្រាជភាពស្រាជភាពស្រាជភាពស្រាជភាពស្រាជភាពស្រាជភាពសម្រាជភាពសម្រាជភាពសម្រាជភ ស្រាជភាពសម្រាជភាពសម្រាជភាពសម្រាជភាពស្រាជភាពស្រាជភាពស្រាជភាពស្រាជភាពសម្រាជភាពសម្រាជភាពសម្រាជភាពសម្រាជភាពសម្រាជភ	1
	SD-1-2
	\$ 0-4-3
्राच्यास्त्रात्वत्रे प्राप्तत्वत्र स्वत्या स्वत्य स्वत्य स्वत्य स्वत्य स्वत्य स्वत्य स्वत्य स्वत्य स्वयः स्वयः 	7-4-Q
୍ର ପ୍ରସ୍ଥ କର୍ମ କର୍ମ କ୍ରାମ କର୍ମ ପ୍ରସ୍ଥ କଳା ପ୍ରସ୍ଥ କଥି ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ କଥିବି କଥ ସ୍ଥ ପ୍ରସ୍ଥ କଥିବା କ୍ରମ୍ୟ କ୍ରାମ କର୍ମ ପ୍ରସ୍ଥ କଥିବି ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ କଥିବି କଥ	1
ਲੀ ਹਰਾਹ੍ਰਆਰਾਅਰ ਐੱਘਰਾਹਨ ਅੰਘਆਆਂ ਅਰਹਰਾਹਰਾਜ਼ਕਰਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹਰਾਹ	e H
	9

3-95 Table 3-19 (cont.)

ATT REPORT THE WORLD OF THE PARTY OF THE PAR

Pascal Ins (2-Chleropheno) 1,3-biehlerobenzene 2,4-biehlerobenzene 2-fethylpheno) Indicarophenoi 1,2-biehlerosopropyl) ether 2-fethylpheno) Hittras-du-n-dipropylatine Heradic os thane Retrobenzene 1-phichlerosopropyl) ether 4-fethylphenoi 2-fethylphenoi 2-fethylphenoi 2-fethylphenoi 2-fethylphenoi 2-fethylphenoi 2-fethylphenoi 2-fetherophenoi 2-fetherophenoi	
	3
	7
	X.
Name Name Go and Good of the Control	9 1-2
्र् स्वत्यस्य व्यवस्थान विश्वतान्त्र व्यवस्थन विश्वतान्त्र विश्वतान्त्	1
ਦਰਸ਼ਵਾਗਰਾਰ ^ਸ ਹਿਸਤਾਰ ਮੁੱਲੇ ਹਨ। ਦਰਸ਼ਵਾਗਰਾਰ ^ਸ ਹਿਸਤਾਰ ਮੁੱਲੇ ਹਨ। ਹਰਤਾਰਤਰਾਰਤਾਰਤਾਰਤਾਰਤਾਰਤਾਰਤਾਰਤਾਰਤਾਰਤਾਰਤਾਵਤਾਰਤ ਾਰਤ ਵਿਚਾਸ਼ਵਾਤ ਵਿਚਾਸ਼ਵਾਤ ਵਿਚਾਸ਼ਵਾਤ ਵਿ ਚਾਸ਼	ž Ž

ALL USEARLE EATA ABOVE OFFIL (US/NG)

Phenol his (2-Onloroe thyl) ether 2-Onlorophenol 1.1high orobensee lengy! alochol 1.1high orobensee lengy! alochol 1.1high orobensee lengy! alochol 1.1high orobensee lengy! alochol his (2-Onloros sprogyl) ether 2-He thylphenol Hit trouo-di-m-da progyl esine hexachloroe thane Nitrokensee lephoror lettrophenol 2.4bid olorophenol 2.4bid olorophenol 2.4bid olorophenol 1.2.4bid olorophenol 1.2.4bid olorophenol 1.2.4bid olorophenol 1.2.4bid olorophenol 1.4.5bid orophenol 1.4.6bid orophenol 1.4.6bid orophenol 2.4.6-bid	
	Į
	į
ng 38 kgan 88aa 88a H8aaaaaaaaaaaaaaaaaaaaaaaaaa	

(-1-Q2	Z-4-05	@mam
Ω	Ω	formal
a	a	bis (2-Calcrostiny) ether
α	a	3-Chlorophenol
ű	ũ	1,3-10-chickobenzene
ū	ŭ	1.4-backlorobeases
G.	n n	Serry! alcoho!
U U	a	1,2-bichlorobases 2,7-kthylpherol
ū	α	bus (2-Giloconsopropy)) ether
n	a	formatifyither)
ā	ã	N-Matrosc-da-tr-dayropy) seams
ů.	ä	Becarbioros: the
ű	Ü	Mitrobenzeoe
U U	n n	Septembers.
U	Ω Ω	iomatignessor. 2,4-Dætigigessor.
a	Ū	percore sur
ŋ	a a	anaritise (ymprisonolis) acthane
a	a	ೆ.4-ಗಿ ಬಿಲ್ಲೆಯಾಗಿಕಾರ್
a	a	9.2.4-Trichlorobensene
 a	363	Maphinal ene
U	a	ל-מונסנת בנות - ארבול מיני ל-מונים ל-מ
a a	a a	New all ambutati ene 4-Cil am-1-methyl phenol
ລຸ	067	C-technylastychellere 4-daminylastychellere
i i	Ω	See the annual properties the seed
a	a.	בֿ, ל , פֿ- "דַיַבַיבּלוֹסִינִסְנָאַנִיבַּ
ä	u	100m0000000000000000000000000000000000
ä	ä	2-C10ronspirinslene
.1	35	S-Nu tround line
a A	Ω - 05€	State thy ight that are
n a	Ū.	Accessivity/sene 2,4-Turntrotoluene
n o	n n	. santanomina 7/2
a	n n	усыярусреж
a	Ω	Z.4-Dinitrophenci
n	a	Committee
n	n	Tampoundat
ů.	. a	\$.4-Itas trotoluene
u u	ä	Diethylphthalate
n.i	n n	4-Chlorophenyl-pnenyl ether
: ::	a a	Finances: 44bitrosmithe
a ·	a a	former in the second of the se
a	a	New transaction and terms
	:	 วระบบราที่ประชาสมาร์ที่ประชาสมาร์ที่ที่
ä	Ω	head distributions
3	.7	icanignolinasma?
.: .:	320 3100	sastátasad? sastátak
.:	023	ास्त्रकारी है। इस्तर्
ā.)CCT	Transference co
2 3. 3.	0.16	Name -
	- n	Stallantryllbendlytted
	a	stub tonsdorono sti-" E, E
:	3001	Senzo(s) antiracene
339	013	Chisene
a 299	oct. U	Dr-n-octylpribatel
:	. 069	Perro (p. fluoranthese
.3	087	Senato (k) fluoranthens
â	98T	perro(s.blace
:	173	amangel (km-t. 1, 1, 1) onsout
:		ಗಟ್ಟಿಕಾಗು ಚಿತ್ರಗಳ ನಿರ್ದೇಶ
-	্যন্ত	בינים ול ידי ל אַבּנגאַן בּנוּ
:	a	HITTHOUGH.

NT REPRE DATA MOVE COLD (NC/NC) EDG-ACTATAL MOTAETS BREDAK BREEL NON SENDRENLE WIND TON STAF

(:tno) 91-E stds;

OFF DRIVING DOTA OBOAN BOT (ACNE) OF STICTOLNING VHOLASTS SAMELY SHEET FOR SEDIMENTS OF STICTOLNING STIE

•				
0.861 101 000	6.4	11	H	U*007.h
ACS1 101 10 a	0.057	0.0001	00.58	n
and the state of t	11	11	11	fi
2981-401 w w	11	0.0091	11	0.00041
7651 - to t m u	n	A	(1)	n
1981 101 10 10	11	A)	11	n
9101 - 101 10 8	11	(1	T)	1)
eren refeler von	f i	n	(i	11
աստ ի տ լզգյեզվել (11	11	11	11
annjay njaho	(1	Π	n.	Û
ւուլածՀարլա	11	11	11	()
100 . 5.	l)	(1	11	n n
արտիլիս» ստիկութիս	11	i i	(1	(i)
daa . v *	(1)	n	Ω	n
ll usliuzobo	£1	11	n	ñ
tit dut	fi	41	11	()
180 · . 7.1	11	n	a	n
u i ditori	11	1)	11	11
f ucifusopo	11	()	i n	(1)
obixogs infilmation	11	A	H	~ 0
re to the to	H	n	i)	n
ալ դնողժա	11	11	11	Ω
(acreport 1) (MM-բատե	11	1)	11	n
(1) 1(1 ·· 15 · 1 · 15 · 15 · 15 · 15 · 15	(1)	()	H	n
Diffe Clear	11	f1	Ĥ	11
(1) [[] - erid [-	(1)	Ω	13	A
CONFOUND	a-10-08	25-64-05	2+64+ds	2-01 OS

G. Unicasing all

add MOLOR H

Table 3-21

AUTO ICH SITE

DIORGANIC ANALYSIS SUMPARY SHEET FOR SEDIMENTS
ALL USEABLE DATA ABOVE CRDL (MG/KG)

METAL	SD-11	ST-2 2	\$D-13	SD-14	SD-B1	SD-B1D	SD-B2	SD-B3
Aluminum	<u>9</u> 5¢	952	1162	i377	1767	1161	1200	2620
Antimony	R	R	K ·	R	R	R	ĸ	Ř
Arsenic	ប	υ	U	2.0	υ	บ	U	5.6
Barium	U .	υ	υ	ï	υ	บ	Ü	€2.0
Beryllium	υ	U	· v	v	. U	υ	U	U
Cainiun	υ	υ	υ	v	U	U	υ	Ü
Calcium	4 7600	23900	29400	42890	39700	3070 0	46000	8170 0
Chronium	17.0	19.0	19.0	16.0	19.0	18.0	17.0	23.0
Cobal:	ប	v	τ	υ	บ	u	υ	บ
Copper	r	ï	14.0	€.0	10.0	€.4	U	14.0
Iron	3668	3805	4345	5784	14900	6561	4978	13200
Lezi	15.0	18.0	11.0	13.0	35.0	20.0	E	208.0
Cyanide	7.	Ĭ.	ř.	Ā	P	Æ	F.	R ·
Magmesium	9016	3666	5495	9219	12300	4 860	13100	36500
Manganese	207.0	259.0	256.0	191.0	249.0	189.0	253.0	294.0
Merowy:	ľ	υ	υ	Ü	0.20	ij	0.10	ľ
Rickel	Ü	Ţ	16.0	r	Ü	u	τ	12.0
Potessius	ï	ΰ	:	:	ť	Ü	· ·	:
Selemi	Ţ	ŗ	Ü	ü	r·	r	Ü	Ü
Silver	.	£	F .	F.	F.	F	F.	F.
Socializa	ü	u	r	v	r	U	ï	"
Thellium	υ	r	Ü	r	:	r	ï	Ü
Vanaitur.	r	ü	;	r	r	ប	υ	15.0
Zinc	31.0	38.0	21.0	23.0	EC.C	46.0	25.0	82.0

THE Below CFD1 FR Unique sable data

3-100 Table 3-21 (cont.)

AUTO ION SITE DICRGANIC ANALYSIS SUMARY SHEET FOR SEDIMENTS ALL USEABLE DATA ABOVE CRIL (MG/KG)

METAL	2D -14	20-CI	SD-C2	ಶು- ಚ	SD-C4	SD-D1	ST /-D2	SD-D3
Aluminum	2203	9 60	739	663	738	1084	19 31	1617
Antimony	R	R	R	R	R	R	R	R
Arsenic	ľ	U	2.5	บ	U	υ	r	, u
Barium	บ	U	U	U	U	U	บ	U
Beryllium	U	U	U	U	u .	υ	บ	U
Cadmium	υ	υ	v	U	U	U	u	U .
Calcium	45600	37500	82100	37100	40300	26900	624 00	68500
Chronium	24.0	19.0	. 13.0	12.0	18.0	17.0	1€.0	23.0
Cobalt	บ	U	U	ប	u	U	r	υ
Copper	11.0	U	13.0	6.4	6.€	37.0	ប	υ
Iron	19100	6193	4747	4156	5907	4968	558 3	7729
Lead	€3.0	43.0	19.0	0.3	43.0	31.0	6.3	24.0
Cyanide	R	R	R	R	R	R	R	R
Magnesium	9 687	7502	14900	843 0	9252	7539	11200	24800
Manganese	2 82.0	177.0	243.0	131.0	2 03.0	129.0	205.0	274.0
Mercury	C.70	υ	υ	0.10	r	2.90	0.2 0	0.20
Nickel	υ	r	, U	υ	υ	, v .	ľ	υ
Potassium	บ	υ	U	r	v	r	r	Ľ
Seienium	υ	υ	υ	U	v	υ	υ	, u
Silver	F.	R	P	R	F.	.	Æ	£
Sodium	U	υ	บ	υ	U	u	Ü	υ
Thallim	v	U	υ	υ	Ľ	บ	ľ	Ü
Var.adium	υ	υ	r	υ	U	บ	. "	U
Zinc	74.0	5£.0	27.0	17.0	51.0	53.0	26.0	44.0

V= below CRIL

R= Unuseable data

3-101 Table 3-21 (cont.)

AUTO ION SITE INORGANIC AUGLYSIS SUMPARY SHEET FOR SEDIMENTS ALL USEABLE DATA ABOVE CRIL (MG/KG)

METAL	SD-D:	SD-E2	ಶಾ-ಟ	SD-E4	SD-F1	SD-F2	SD- F3
Numinum	1325	2710	2570	1410	2550	1460	2050
Antimony	£	K	R	R.	R	R	£
Arsenic	υ	5.0	5.¢	3.2	€.5	2.8	U
Bartum	95.0	€5.0	ប	r	U	t	ľ
Beryllium	υ	บ	บ	ט	υ	τ	υ
Cadmium	υ	2.€	2.0	3.8	ľ	r	U
Calciur	35100	24600	51000	46700	23600	29600	35600
Chroniu	113.0	2 ⁻ .c	31.0	26.0	54.0	22.0	23.0
Cobalt	τ	U	บ	υ	ប	υ	ť
Copper	117.0	45.0	66.0	13.0	44.0	11.0	9.0
Iron -	11100	16700	16200	€760	10900	€920	6850
Lezi	71.0	77.0	99.0	75.0	189.(31.0	26.0
Cyznide	£	c. c	0.0	0.0	0.0	0.0	c.c
Magnesium	6671	7670	8420	237 0	4 530	622 0	10200
Manganess	173.0	415.0	208.0	140.0	33€.C	172.0	141.0
Hereury	Ü	5.24	C.18	0.22	c.47	τ	ť
Mickel	19.0	11.1	17.0	14.0	11.0	ŗ	13.0
Fotassium	ť	••	Ü	v	ŗ	Ü	•••
Selenium	v	.	c.c	0.0	0.0	0.0	ι.:
Silver	F.	ť	2.1	3.0	r	Ü	: ·
Sodium	υ	;;	τ	Ü	r	ï	"
Thallium	ï	Ü	€€	ε	ľ	ซ	•••
Venediu	ÿ	14.0	ť	r	2	ย	ï
Cinc	£1.0	70.0	\$2.0	43.0	200.0	39.0	37.:

U= Belom CEDI

F= Unuseable data

E4:

FIGURE 3-J ORGANIC ANALYSES ABOVE CRDL

TRANSECT F

3,3-dichlorobenzidine 1100
nophthalene 1300
2-methylnaphthalene 640
fluoranthene 9400
dibenzofuran 900 F1
phenanthrene 7300
anthracene 2100
di-n-butylphthalate 580
acenaphthylene 900
fluorene 1600
benzo(a)anthracene 4600
bis(2-ethylhexyl)phthalate 1800
benzo(k)fluoranthene 7000
benzo(a)pyrene 2600

AT TRANSECTS E AND F

naphthalene 430 2-methylnaphthalene 430 fluoranthene 2200 pyrene 910 **F2** phenonthrene 1400 anthrocene 350 di-n-butylphthalate 520 benzo(b)fluoranthene 690 benzo(q,h,i)perylene 520 benzo(a)anthracene 1000 bis(2-ethylhexyl)phthalate 1700 benzo(k)fluoranthene 480 benzo(a)pyrene 780 indeno(1,2,3-cd)pyrene 610 chrysene 870

TRANSECT E

fluoranthene 2000
pyrene 1100
phenanthrene 1400 E2
anthracene 350
chrysene 780
penzo(b)fluoranthene 670
diethylphthalate 43
ber.zo(a)anthracene 780
bis(2-ethylhexyl)phthalate 1100
benzo(c)pyrene 650

naphthalene 410
fluorene 540 chrysene 1300
fluoranthene 3600
indeno(1,2,3-cd)pyrene 770
phenanthrene 3100
anthracene 810
tenzo(b)fluoranthene 1900
tenzo(c,h,i)perylene 590
benzo(c,anthracene 1400
pyrene 1800
benzo(d)cyrene 1300

F3 bis(2—ethylhexy!)phthalate 663 acetone 16

naphthalene 330
fluoranthene 4800
pyrene 2300
phenanthrene 3300
anthracene 630
benzo(b)fluoranthene 3200
benzo(g,h,i)perylene 1200
benzo(a)anthracene 2400
chrysene 2300
fluorene 380
benzo(a)pyrene 2200
indeno(1,2,3—cd)pyrene 1400
dibenzo(a,h)anthracene 420

CONCENTRATIONS IN UG/KG

N

D CB A

Acetone was detected in two of the samples (λ -2 and F-3). The λ -transect is located upstream from the Site and represents background sampling stations while the F-transect lies approximately 1 mile downstream from the Site. 2-Butanone was detected only in D-2 at 13 ug/kg.

Aromatic hydrocarbons and phthalate esters were present in the base neutral fraction of the semivolatile analyses. Three phthalate compounds were detected in the samples. Bis(2-ethylhexyl)phthalate was determined to be above detection levels in all but two of the samples, varying from 580 to 3,700 ug/kg. Di-n-butylphthalate was present in E-4 (520 ug/kg) and F-1 (520 ug/kg). It was below detection in all other sediment samples but was present in the field blank at 130 ug/kg. Diethylphthalate was detected only in E-2 (43 ug/kg).

The rest of the base neutral semivolatiles above CRDL range? from 330 ug/kg for naphthalene and pyrene to 9,400 ug/kg for fluoranthene. 4-methylphenol was detected in one sample, F-3, at 260 ug/kg, 1 mile downstream from the Site and downstream from a waste disposal facility. Bis(2-ethylhexyl)phthalate was the only organic compound detected in sediment samples A1, A4, B2, B3, C1, C5, and C4. Bis(2-ethylhexyl) phthalate was detected in all but two of the sediment samples and was present at 110 ug/kg in the field blank taken from decontamination water. Fluoranthene and phenanthrene were also detected in a majority of the samples. Sediment samples containing a larger variety of detected organic compounds were B-4, C-2 and D-4 within the vicinity of the Site. Both the E and F transects, which were sampled a considerable distance from the Auto Ion Fite, often contained a greater variety and higher concentrations of detectable semivolatile compounds than those transects at the Site.

Aluminum, calcium, chromium, iron, lead, magnesium, manganese and ninc were detected in all samples. Magnesium values were higher than typical soil concentrations for a majority of samples including those sampled as background on the A-transect. This may be a result of the composition of drift and bedrock material in the Kalamazoo area. Calcium values ranged from 23,600

mg kg to 82,100 mg/kg. Chromium values were similar to background values in all samples but D4 and F-1. D-4 was ten times the concentration of background samples and F-1 was also somewhat elevated above background. Aluminum values ranged from 952 to 2,870 mg/kg with highest values occurring in E3, E2, B3 and Lead values were 10 times higher in concentration in samples B3 (208 mg/kg) and F1 (189 mg/kg) than in the A-transect background range of 11-18 mg/kg. Sample F1 also contained the highest zinc concentration of 160 mg/kg. Detectable arsenic concentrations were located on the E and F transects and in A4 (2 mg/kg), B3 (5.6 mg/kg) and C2 (2.5 mg/kg). Cadmium was detected in three samples (1.6 mg/kg, 2.0 mg/kg, 3.8 mg/kg). All three of these samples lie on the E-transect approximately 1/2 mile downstream from the Site. Copper was detected in 75% of the sediments sampled with concentrations ranging from 6 to Background values ranged from 6 to 14 mg/kg. concentrations of copper were detected in D4 (117 mg/kg), E2 (45 mg/kg), E2 (66 mg/kg) and F1 (44 mg/kg). Mercury was present in the E and F transects, D3, D2, D1, B1, B2 and B4. Higher values occurred at F1, D1, and B4. Nickel was detected in one background sample (A3, 16 mg/kg), B3, D4 and the E and F transects. Silver was detected at E3 and E4. However, a majority of silver analyses and cyanide analyses were invalidated during QA/QC, making comparisons impossible (See Appendix V for details.).

The E and F transects, as with the organic analyses, contained the greatest variety and often the highest concentrations of detectable metals. Both of these sampling transects are far downstream from the Auto Ion Site and the F-transect lies downstream from a waste disposal plant. The D transect also contained a number of detectable metals. The D transect lies directly downstream from a water outfall area determined in earlier investigations to be an area of potential discharge.

River sediment samples taken during the second round were also analyzed for pesticides and PCB's. PCB's were detected in two samples along transect D, located just downstream of the Auto Ion Site. Sediment sample location D1-2 results indicate the presence of Arotlor 1254 at 420 ug/Kg, while 1200 ug/Kg of roclor 1242 and 1500 ug/Kg Aroclor 1254 were detected at location D2-2. PCB's were also detected along transect F located approximately one mile downstream

of the Auto Ion Site. Aroclar 1254 was detected at 82 ug/Kg at sediment sample location F3-2, while 16,000 ug/Kg of Aroclar 1,242 and 4,700 ug/Kg of Aroclar 1260 were detected at location F4-2. Results of the pesticide/PCB analyses are listed in Table 3-20.

In order to assess the chemical data obtained for the river sediments a better understanding of the physical parameters of the river must be established. Cross-sections of the river, and cross-sectional velocity distributions are necessary to determine the variations in transport capabilities at each transect. During the sampling done in March, 1985 many areas in the river were found to be highly armored making sampling difficult. To obtain a quantity suitable for laboratory analysis, some bias in sampling took place. Sandy-silty sediments were sought out due to the ease of sampling. Sandy-silty material would exist in a different depositional environments than would the armored gravels. The nature of the sediments, i.e. organic debris versus gravel, will also influence ability of a sediment to retain contaminants.

3.7.3.3 Other Discharges. An examination of permitted discharges to the river within the vicinity of the Site (Appendix VII) revealed that some of the detected compounds present in the sediment analytical results were present in addition to other compounds found in the discharge of other active facilities. The Michigan Department of Mental Health, Kalamazoc Regional Psychiatric Hospital is permitted to discharge selenium and mercury into Arcadia Creek. The outlet of Arcadia Creek into the Kalamazoo River is unclear but it appears from the topographic map to be upstream from transects E and F. Lakeside Refining discharges into Davis Creek, located upstream from all sample locations; its effluent may contain 1,1,1-trichloroethane, oil and grease, phenols, and ammonia. The city of Kalamazoo is discharging effluent to the river at the facility on North Harrison; this can include cadmium, lead, silver, cyanide and 1,2-dichloroethene. General Signal Corporation is discharging some oil and grease with their effluent from the facility on East Michigan Avenue. Upjohn Company is authorized to discharge chlorine, phosphorous, benzene, 1,2 dichloroethane, chlorobenzene, t-butanol and methylene chloride into Portage Creek. In addition to these known inputs there

are a number of waste treatment facilities upstream from the Site on the Kalamazoo River. The area is also heavily industrialized and many potential discharge and runoff points may exist near the river.

3.8 Subsurface Drum Investigation

- 3.8.1 <u>Purpose</u>. During the RI field work the MDNR requested that an investigation be undertaken to determine if allegations concerning buried drums at the Site were in fact true. After the PRP Committee, U.S. EPA, and MDNR came to an agreement to initiate the investigation, HART personnel conducted a preliminary subsurface Site characterization in the suspect area. This suspect area was located in the northeast corner of the fenced Site. Findings of this preliminary survey indicated that there were underlying metal objects within the suspect area. Based on these findings, it was proposed that an excavation of the suspect area be undertaken to make a final determination as to the existence of buried drums.
- 3.8.2 Methodology. The first phase of this investigation consisted of surveying the entire suspect area with a metal detector. The locations of anomalies identified during the metal detector survey were noted by the field team for the upcoming excavation. The subsurface excavation was performed by Environmental Management Control Inc. (EMC) of Genoa, Ohio. A long trench was dug using a backhoe which was equipped with a separate air-supply source. During the trench excavation the backhoe operator utilized Level B protection, while two HARI personnel and an MINR representative wore Level C and maintained constant air monitoring. Level B protection was nearby and would have been used if ambient air levels exceeded 5 ppm and was sustained for five minutes of organic tapors or if drums were discovered.

The excavation began approximately five feet from the east fence, in the northeast corner of the Site, and continued in a westerly direction (Figure 3-N). Two spotters stood at the east end of the trench while a HART person stood by the backhoe and monitored the air. The trench was

dug approximately 8-10 feet deep and about 10 feet wide. The work was conducted under MDNR and USEPA observation and proceeded in a slow and cautious manner to prevent damage to any drums that might be encountered.

3.8.3 Findings. The trench was taken to within 15 feet of a cement foundation. Three utility lines were uncovered. The conclusion of the trench excavation were that there was no evidence of earlier excavations, no drums were encountered, and there were no readings of volatile organics above the background ambient air. Based on the above information it was concluded that there was no basis to the allegation that drums were buried in the northeast corner of the fenced Site.

3.9 Waste Water Disposal

Under the guidance of the RI work plan all water generated through decontamination, drilling, well development and sampling activities was collected and stored in a porl and a plastic lined box. Drilling mud used at the Site was also stored in the pool.

The waste was disposed of to the City of Kalamazoo Waste Water Treatment Plant (?ppendix VIII).

4.0 GEOLOGY AND HYDROGEOLOGY

4.1 Introduction

An understanding of the geology and hydrogeology is necessary to assess the potential for contaminant migration from the Site. Information obtained from test boring logs provides the basis for the following discussions of regional and Site geology and hydrogeology.

4.2 Geology

4.2.1 Regional Geology. The Auto Ion Site is located on the southwestern edge of the Michigan Basin, an intercratonic basin which has existed in some form since Precambrian time. Underlying bedrock is of Paleozoic age and consists of (from oldest to youngest): Cambrian sandstone and limestone of the Lake Superior and Prairie du Chien overlying an extensively eroded Precambrian surface, the shale and limestone of the Trenton-Black River and Eden Groups of Ordovician age, the Silurian age Richmond, Cataract, Niagara and Saline Groups, the Devonian Detroit River Group, the shale and limestone of the Traverse Group and the Coldwater Shale of the late Devonian to early Mississippian.

Rocks of the Michigan Basin are overlain unconformably by Pleistocene glacial deposits as well as associated lake beds, spillways, outwash and glacial channels. In Kalamazoo Township, the glacial drift ranges from 50 feet to 300 feet in thickness (Forstat, et al., 1983).

4.2.2 <u>Site Geology</u>. Glacial deposits lying unconformably above the Mississippian age Coldwater Shale are approximately 100 feet in thickness. Drift consists primarily of a medium grained sand interbedded with gravel, silt and clay. Clay lenses are also present in this region. Overlying fill material ranges in thickness from two feet to approximately twelve feet and consists of fine to medium grained sands mixed with gravel, brick and cinder fragments as well as organic material (Figures 4-A through 4-D).

4.3 Surface Water Hydrology

The Auto Ion Site is located within the boundaries of the 100 year flood plain of the Kalamazoo River in the Kalamazoo River Drainage Basin. Surface drainage from the Site flows into either the city sewer system or the Kalamazoo River which subsequently drains into Lake Michigan at a point 40 miles northwest of the Site.

U.S.G.S. gauging station data from approximately three miles upstream of the Auto Ion Site (Comstock #09106000) indicates an average river discharge of 1000 cfs. Gauging station data (Table 4-1) indicates that a discharge increase of 400 cfs could result in a river stage increase of one foot at the Comstock gauge.

River depths within the study area range from 4 to 10 feet with a width of approximately 110 feet. The Site is situated adjacent to a meander in the river, and due to thalweg flow in this region river parameters that govern sediment transport cannot be determined with the available data.

4.4 Geohydrology

Well logs from the vicinity indicate that municipal and industrial groundwater wells, located within a two mile radius of the Site, utilize the sand and gravel aquifer. Based on limited well data the drift is at least 100 feet deep. Though sand and gravel deposits are generally under unconfined conditions, localizer areas of clay layers may create confined conditions in areas of limited extent.

Groundwater levels for those wells located in the vicinity of Auto Ion were reported to range from 4 to 30 feet below the ground surface with an average depth at the Site being 10 feet. Water level data for the on Site monitoring wells, along with the corresponding staff gauge data shown in Table 3 indicate that recent precipitation events dictate the direction of flow in the aguifer that underlies the Auto Ion Site. The high k value, 3×10^{-2} cm sec, indicated from the slug tests would allow for quick

TABLE 4-1
COMSTOCK GAGE DATA (09106000)

<u>Date</u>	Discharge (cfs)	Stage (ft)
10/21/87	736	1.34
12/02/87	1260	1.89
01/13/88	995	1.60
02/19/88	1170	1.76

response to precipitation events. The potentiometric surface indicates that during normal conditions the groundwater flows toward the river in a southwesterly direction (Figures 3-C,D,G). As previously mentioned, a storm event causing a 400 cfs discharge increase in the Kalamazoo River will result in a 1 foot stage increase. Such a storm event would cause a reversal in the groundwater flow to a northwesterly direction. This reversal can be seen in the potentiometric surface maps (Figures 3-E and F).

5.0 EXTENT OF CONTAMINATION

5.1 Subsurface Soils

Results of the analysis of soil samples at Auto Ion revealed that the west and southwest sides of the property contained highest concentration of contaminants, primarily within the upper 11 feet.

Boring W-1 (Figure 5-D) which represents background had two semivolatiles (di-n-butlyphtalate 840-1700 ug/kg, bis(2-ethylhexyl) phthalate 510-1400 ug/kg), and one volatile (2-butanone 58 ug/kg) present.

The borings W-2 and B-3 (Figures 5-D and 5-B) which represent the northeast and east side of the Site were analyzed for inorganics only. W-2 had only a small amount of cyanide (5.1 mg/kg) near the surface (0-2 feet) while B-3 had cyanide, cadmium, chromium, mercury and zinc concentrated in the first eight feet. Highest concentrations were contained in the 6 to 8 foot interval (chromium 2,968 mg/kg, cyanide 231 mg/kg, zinc 539 mg/kg). Mercury was detected in the 48-60 foot zone at 2 mg/kg and was detected in the 88-90 foot interval at 3.2 mg/kg.

The southeast corner of the Site, boring W-6 (Figure 5-F), was analyzed for inorganics and had only near surface contamination. Cyanide (74 mg/kg) was detected in the 0-2 foot interval and cadmium (1.2 - 1.5 mg/kg) in the 0-f foot interval.

The center of the Site and boring B-2, which was located where the Auto Ion building had stood, was analyzed for organics and inorganics. Boring B-2 (Figure 5-A) had low concentrations of cyanide, semivolatiles, and a pesticide heptachlor (8.5 ug/kg). The greater number of contaminants were in the upper 11 feet. However, the semivolatile bis (2-ethylhexyl)phthalate 940 ug/kg) and the pesticide heptachlor were also detected in the 18.5-20 foot interval. Cyanide was detected throughout the boring.

FIGURE 5-A DEPTHS OF CONTAMINANTS AT AUTO ION

FIGURE 5-B DEPTHS OF CONTAMINANTS AT AUTO ION

FIGURE 5-C DEPTHS OF CONTAMINANTS AT AUTO ION

dqq -.1299 ,Jov .ima2

* Concentration units

mqq - zlotaM dqq - zalitoiloV

FIGURE 5-E DEPTHS OF CONTAMINANTS AT AUTO ION

FIGURE 5-F DEPTHS OF CONTAMINANTS AT AUTO ION

The south central and southwest sides of the Site, represented by boring W-4 and W-5 (Figure 5-F) were analyzed for inorganics. W-4 in the south central part of the Site had cadmium (2.4 ug/kg) and chromium (1,050-1,601 ug/kg) in the first three feet of the boring. Cyanide was detected between 0 and 11 feet and again at the 19 - 21 foot interval. W-5 had mercury (0.5-0.6 mg/kg) in the first four feet, nickel (2,957 mg/kg) in the 6 - 8 foot interval and chromium (1,045-2,508 mg/kg) from 2 - 8 feet. The 6 - 8 foot interval had cadmium (2.7 mg/kg), lead (374 mg/kg) and zinc (469 mg/kg). Cyanide was present from 0 - 10 feet. Contamination in both of these borings was in the upper ten feet.

The lagoon and above ground storage tank were located in the west and northwest portion of the Site. Six borings (B-1, B-4, B-5, B-6, B-7, and W-3b) were located in this area. Two borings were drilled to 50 and 110 feet. Four were shallow borings to a depth of eight feet in the old lagoon Site. The two deep borings had the greater number and highest concentrations in the upper ten feet. Samples from W-3b (Figure 5-E), drilled to 50 feet, contained the most contaminants of all the borings on the Site. The upper ten feet had volatiles, semivolatiles and inorganics as shown in Figure 5-E. Below ten feet, volatiles were detected at 13.5-15.5 feet (methylene chloride 32 ug/kg) and 44-45.5 feet (acetone 14 ug/kg). The acetone detected at 44-45.5 feet is questionable as no other volatile was detected at that depth and it is a common laboratory contaminant.

The semivolatiles detected below ten feet were di-n-butylphthalate (2.7 -3,800 ug/kg) between 13.5-25.5 feet, bis(2-ethylhexyl)phthalate (590 ug/g) between 13.5-15.5 feet and butylpenzylphthalate (910-1600 ug/kg) between 24-30.5 feet and at 39-40.5 feet. The pesticide beta-EHC (7.8-28 ug/kg) was detected between 29-50.5 feet.

Most contaminated samples from boring B-1 (Figure 5-A) were also detected in the upper ten feet. A sample at the four to six fort interval was collected for volatile analysis based on visual inspection. This sample detected several volatiles but the extent cannot be determined as it was the only volatile sample collected from this boring. The inorganics (arsenic 62-80 mg/kg,

chromium 2,433 mg/kg, cyanide 4.1 mg/kg, lead 928 mg/kg and antimony 13 mg/kg) were detected in the first four feet. Cadmium (1-1.6 mg/kg) was detected from 10 to 26.5 feet and cyanide was detected at the 18.5-20 (4.9 mg/kg) foot interval and the 43.5-45 foot (0.7 mg/kg) interval. Three of the four shallow borings, in the area of the old lagoon (B-4, B-6, B-7) detected contaminants down to six feet (Figure 5-B and 5-C). Boring B-4 was contaminated in the first six feet with cyanide (0.4-2.7 mg/kg) and nickel (1,449 mg/kg). Boring B-6 was contaminated in the first six feet with cadmium (2.5-9.2 mg/kg), chromium (1,207-1,423 mg/kg) cyanide (0.9-17 mg/kg), lead (365 mg/kg), nickel (576-1,022 mg/kg) and zinc (354-1,474 mg/kg). Boring B-7 was contaminated in the first six feet with cadmium (4.7-12 mg/kg), chromium (2,572-3,521 mg/kg), cyanide (0.4-4 mg/kg), merc.ry (0.4-1.6 mg/kg) and zinc (589-2,029 mg/kg). Boring B-5, had nickel (517 mg/kg) at the six to eight foot interval and cyanide (0.4 - 2,968 mg/kg) in every sample.

5.2 Groundwater

The background well W-1 was sampled for purposes of comparison to those locations where contamination was suspected (Figure 3-B). This background location was sampled for inorganics, organics and pesticides/PCB's. The analytical results for this well revealed no pesticides/PCB's. Tetrachloroethene was the only volatile compound found at W-1. The conservative results from the first sampling round were used as a general comparison because of some analytical differences between sampling rounds.

Two semivolatiles, di-n-butylphthalate and bis(2-ethylhexyl) phthalate, were detected in W-1 as well as all other on-Site well samples. As these two compounds were found in the field blank at similar or higher concentrations, the validity of these results is questionable.

Well W-2, installed to monitor the northeast section of the Site indicated inorganic concentrations elevated over W-1 including arsenic, barium, beryllium, cadmium, chromium cobalt, copper, iron, lead, cyanide, mercury, nickel, silver, vanadium, zinc, and hexavalent chromium. The concentrations are listed in Tables 3-9 and 3-10. In contrast, the soil at

this location contained only arsenic, barium, chromium, lead, cyanide and nickel. The volatile organics found in the well sample for W-2 were chloroform and trichloroethene (Table 3-8), while diethylphthalate was the only semivolatile detected at W-2. These compounds were not analyzed for in the soils from this area.

Well 3A monitors the upper aquifer in the area of the seepage lagoon. Well 3B monitors the deep aquifer in the same area. These wells, 3a and 3b, are separated by a clay lens with a thickness of about ten feet. The analyses for these wells had detected cyanide and nickel within the uppermost six feet of the soil.

Volatiles detected in the shallow well W-3a include vinyl chloride, methylene chloride, trans-1,2-dichloroethane and trichloroethane. No volatiles were detected in W-3b, which monitors the deeper aquifer. Both methylene chloride and trans-1,2-dichloroethane were found in the upper six feet of soil at this location.

One semivolatile, 2,4,6-trichlorophenol was detected in water samples from W-3a. This is the only occurrence of this compound at Auto Ion. Beta-BHC, a common pesticide known as lindane, had been detected in soil samples from W-3b below the clay lens. Beta-BHC, however, was not found in the groundwater nor would it be expected as it is not water soluble.

Wells W-4, W-5 and W-6 will be discussed together because of similarities in the analytical data and location with respect to the Kalamazoo River.

Nine inorganic compounds, arsenic, cadmium, chromium, cyanide, lead, manganese, nickel, vanadium and zinc were detected in all three of these wells at levels elevated over the background well W-1. Arsenic, cadmium, chromium, manganese, vanadium and zinc were detected in the soils at each well location. Copper and mercury were detected in the groundwater of wells W-5 and W-6, while barium, beryllium, and cobalt were detected only in W-6. These compounds had also been found in the soils for W-6. Volatile organics were detected in well W-4 and W-5, but none were detected in W-6. The volatile organics common in both W-4 and W-5 were; vinyl chloride, methylene chloride, and trichloroethene.

In addition, trans-1,2-dichloroethane, chloroform and 1,2-dichloroethane were also found in W-4.

One semivolatile, 1,2-dichlorobenzene, was present in the sample from W-4. Soils from W-4, W-5 and W-6 were not analyzed for organics.

5.3 Surface Water

With the exception of bis(2-ethylhexyl)phthalate which was also detected in the field blank, no volatiles or semivolatiles were detected in the surface water samples of the Kalamazoo River.

Inorganic analysis indicates detectable concentrations of lead, nickel, chromium, cadmium and aluminum in water samples taken along the D-transect (Table 3-17).

5.4 <u>Sediments</u>

Two volatiles (acetone and 2-butanone) were present in the sediment analyses. Three compounds were detected in 3 sample locations; two of these locations are off-Site.

The majority of samples collected contained three or less semivolatile organic compounds. Those containing eight or more semivolatiles were samples B1, B4, C2, D4 and E2, E3, E4, F1 and F2. Transects E and F contained the largest variety of organic compounds. Both E and F are located a considerable distance from the Auto Ion Site (approximately 1/2 and 1 mile respectively). These transects also showed higher concentrations of arsenic, cadmium, lead and nickel than most of the other sampling stations.

Samples collected from two of the transects, D and F, showed positive results for PCB analyses. Both of these transects lie downstream of the Auto Ion Site. No PCB's were detected in samples collected directly adjacent to Site. A review of STORET (a water quality database containing the analytical results for various parameters conducted at different locations on many

Michigan rivers) water quality information reveals the detection of PCB's in Ralamazoo River sediments both upstream and downstream of the Auto Ion Site.

Stations D4 and B3 also contained higher concentrations of metals such as arsenic, nickel and lead. The highest concentration of lead occurred at B3 located just downstream of the storm water runoff drain. Although magnesium values were high in a majority of the analyses, concentrations appeared to be similar in most samples including those in background sampling locations and are possibly due to naturally higher concentrations of magnesium within the Kalamazoo area.

Sample D1 had a very high concentration of mercury (2.9 mg/kg). D1 lies ten feet downstream of the circulating outfall on the opposite side of the river from Auto Ion, and approximately 170 feet downstream from the surface water discharge pipe. Cyanide was not detected in those samples that had usable analyses. Nickel was present in low concentrations in background samples, Site samples, and downstream samples, with most of the detectable nickel occurring in the E and F transects. Higher values of zinc were also detected along the E and F transects.

Sampling station D4 appears to have higher metal concentrations and more detectable metals present than most samples within the Site. This station indicated a variety of organic compounds present as well. Two stations on B and C also detected a number of organic compounds in the analyses.

The biggest variety and often the higher concentration of both organic and inorganic compounds occurred along the E and F transects. It is likely because of the distance between the Auto Ion Site and these transects, that pollutants are entering the Kalamazoo River from other sources upstream from E and F sampling stations. Many industries discharge into Portage Creek which enters the Kalamazoo River upstream from both E and F transects, but downstream from the Auto Ion Site.

5.5 Summary

In review of the different matrices analyzed at the Auto Ion Site, several generalizations can be made:

- Semivolatiles detected in both soils (where analyzed for) and river water sediments, did not occur in groundwater.
- No PCBs were detected on the Auto Ion Site.
- * No pesticides or PCBs were detected in groundwater samples.
- Inorganics not detected during the first round of groundwater sampling at the background well (W-1), and ubiquitous at the Auto Ion Site include arsenic, cadmium, chromium, copper, cyanide, iron, mercury, nickel, vanadium and zinc.
- * Analyses of well W-3b, penetrating the deep aquifer, indicates comparatively lower levels of inorganic constituents and an absence of organic compounds.

REPERENCES

- Bureau of Water Management, Water Resource Commission, Michigan Department of Natural Resources, 1971, Investigation of Auto Ion Chemical Company, Kalamazoo, Michigan.
- Cooper, H.H., Bredehoeft, J.D. and Papadopulos, S.S., 1967, <u>Response of a Finite-Diameter Well to an Instantaneous Charge of Water</u>, Water Resources Division, U.S. Geological Survey, Washington, D.C., Water Resources Research, Vol. 3 No. 1.
- Dorr, J.A. and Eschman, D.F., 1970, <u>Geology of Michigan</u>, University of Michigan Press, Ann Arbor, Michigan, 476 pp.
- Forstat, D.W., 1983, <u>Drift Thickness of Kalamazoo County in Selected Geological</u>
 <u>Maps of Kalamazoo County</u>, by Monaghan, Larson, G.J., Forstate, D.W., and
 Sorensen, M.O., County Resources, Geological Survey Division.
- Freeze, R.A. and Cherry, J.A., 1979, <u>Groundwater</u>, Prentice Hall Inc., Englewood Cliffs, New Jersey, 604 pp.
- Hvorslev, M.J., 1951, D.B. Knowles, R.J. Brown, and R.W. Stallman, <u>Theory of Aquifer Tests</u>, U.S. Geological Survey Water-Supply Paper 1535-E.
- Kelley, R.W., 1968, <u>Bedrock of Michigan</u>, Michigan Department of Natural Resources, Geological Survey Division, Small scale map No. 2.
- Leverett, F. and Taylor, F.B., 1915, <u>The Pleistocene of Indiana and Michigan and the History of the Great Lakes</u>, <u>United States Geological Survey Division Monograph 51, 529 pp.</u>
- Michigan Geological Survey Division, Michigan Department of Natural Resources, 1955, Glacial and Surficial Geology Southern Peninsula, map.
- CH2M HILL, 1984, Remedial Actions Master Plan Auto Ion Waste Treatment Facility.